首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new leakage‐tolerant true single‐phase clock dual‐modulus prescaler based on a stage‐merged scheme is presented. Leakage‐restricting transistors are used to reduce the leakage currents at critical nodes, and leakage‐related malfunctions are eliminated at minimal cost in terms of speed, power, and area overheads. An HSPICE simulation in a 40‐nm process shows that the proposed divide‐by‐2/3 divider can effectively enhance robustness against leakage currents to extend the low frequency limit of the circuit over wide temperature and threshold voltage ranges. Additionally, the proposed design shows speed and power performance that is comparable with the performance levels of referenced designs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the optimal designs of two analogue complementary metal–oxide–semiconductor (CMOS) amplifier circuits, namely differential amplifier with current mirror load and two‐stage operational amplifier. A modified Particle Swarm Optimization (PSO), called Craziness‐based Particle Swarm Optimization (CRPSO) technique is applied to minimize the total MOS area of the designed circuits. CRPSO is a highly modified version of conventional PSO, which adopts a number of random variables and has a better and faster exploration and exploitation capability in the multidimensional search space. Integration of craziness factor in the fundamental velocity term of PSO not only brings diversity in particles but also pledges convergence close to global best solution. The proposed CRPSO‐based circuit optimization technique is reassured to be free from the intrinsic disadvantages of premature convergence and stagnation, unlike Differential Evolution (DE), Harmony Search (HS), Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO). The simulation results achieved for the two analogue CMOS amplifier circuits establish the efficacy of the proposed CRPSO‐based approach over those of DE, HS, ABC and PSO in terms of convergence haste, design conditions and design goals. The optimally designed analogue CMOS amplifier circuits occupy the least MOS area and show the best performance parameters like gain and power dissipation, in compared with the other reported literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a novel technique to design fast‐squaring circuits. The proposed approach speeds up squaring operations combining the 3‐bit scan without overlapping bits and the folding technique. Several hardware implementations of squarer circuits designed as described here are characterized for several operand wordlengths. Obtained results demonstrate that, using the ST 90 nm 1V CMOS technology, a 32‐bit squarer exploiting the novel way of generating partial products reaches a 769 MHz running frequency, dissipates less than 19.3 mW on average and occupies ~91 000µm2 of silicon area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A 5.25‐V‐tolerant bidirectional I/O circuit has been developed in a 28‐nm standard complementary metal‐oxide‐semiconductor (CMOS) process with only 0.9 and 1.8 V transistors. The transistors of the I/O circuit are protected from over‐voltage stress by cascode transistors whose gate bias level is adaptively controlled according to the voltage level of the I/O pad. The n‐well bias level of the p‐type metal‐oxide‐semiconductor transistors of the I/O circuit is also adapted to the voltage level of the I/O pad to prevent any junction leakage. The 5.25‐V‐tolerant bidirectional I/O circuit occupies 40 µm × 170 µm of silicon area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Dual‐rail dynamic logic circuits can provide inverting and noninverting outputs, especially for asynchronous designs, to implement complicated gates at the cost of approximately doubling the area and power consumption. In this paper, a new dual‐rail dynamic circuit is proposed which has lower die area consumption and higher noise immunity without dramatic speed degradation for even wide fan‐in gates for asynchronous circuits. The main idea in the proposed circuit is that voltage due to the current of the pulldown network (PDN) is compared with the reference voltage to provide two complementary outputs. The reference voltage almost corresponds to the leakage current of the PDN with all transistors being off. The proposed circuit is compared with conventional dual‐rail circuits such as differential domino logic and differential cross‐coupled domino logic. Simulation results for 32‐bit‐wide OR gates designed using high‐performance 16‐nm predictive technology model demonstrate significant performance advantages such as 66% power reduction and at least 2.86× noise‐immunity improvement at the same delay compared to the differential domino circuits. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

6.
This paper presents an efficient approach for the optimal designs of two analog circuits, namely complementary metal oxide semiconductor) two‐stage comparator with p‐channel metal oxide semiconductor input driver and n‐channel input and folded‐cascode operational amplifier using a recently proposed meta‐heuristic‐based optimization algorithm named as colliding bodies optimization (CBO). It is a multi‐agent algorithm that does not depend upon any internal control parameter, making the algorithm extremely simple. The main objective of this paper is to optimize the metal oxide semiconductor (MOS) transistors' sizes using CBO in order to reduce the areas occupied by the circuits and to get better performance parameters of the circuits. Simulation Program with Integrated Circuit Emphasis simulation has been carried out by using the optimal values of MOS transistors' sizes and other design parameters to validate that CBO‐based design is satisfying the desired specifications. Simulation results demonstrate that the design specifications are closely met and the required functionalities are achieved. The simulation results also confirm that the CBO‐based approach is superior to the other algorithms in terms of MOS area and performance parameters like gain, power dissipation, etc., for the examples considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We have introduced an example of a system that embodies the concept of a ubiquitous communication service and explained the importance of low power consumption in the communicator that will serve as the bridge between the real world and the network for real‐time services in which sensor data is acquired every second. An effective solution to the problem of high energy efficiency is to employ the synergy of combining low‐voltage analog circuit technology and FD‐SOI devices. Taking advantage of that synergy to reduce the power consumption of the communicator during operation to about 10 mW and employing intermittent operation with an activity rate of less than l% would make it possible to support operation for 1 year or more with a commercial coin‐type lithium battery. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 162(3): 38–43, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20543  相似文献   

8.
An efficient technique for designing high‐performance logic circuits operating in sub‐threshold region is proposed. A simple gate‐level body biasing circuit is exploited to change dynamically the threshold voltage of transistors on the basis of the gate status. Such an auxiliary circuit prepares the logic gate for fast switching while maintaining energy efficiency. If 200 aJ is the target total energy per operation consumption, a two input NAND (NOR) gate designed as described here shows a delay reduction between 20% (16%) and 40% (48%), with respect to previously proposed sub‐threshold approaches. Copyright 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a novel approach to study the phase error in source injection coupled quadrature oscillators (QOs). Like other LC QOs, the mismatches between LC tanks are the main source of phase error in this oscillator. The QO is analyzed where the phase error and oscillation frequency are derived in terms of circuit parameters. The proposed analysis shows that the output phase error is a function of injection current and the current of source equivalent capacitor. As a result, it is shown that increasing of tail current and LC tank quality factor decreases the phase error. Derived equations show that the phase error can be cancelled and even controlled by adjusting bias currents. To evaluate the proposed analysis and consequent designed QO, a 5.5 GHz CMOS QO is designed and simulated using the practical 0.18 µm TSMC CMOS technology. The experiments show good agreement between analytical equations and simulation results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, CMOS‐based low‐noise amplifiers with JFET‐CMOS technology for high‐resolution sensor interface circuits are presented. A differential difference amplifier (DDA) configuration is employed to realize differential signal amplification with very high input impedance, which is required for the front‐end circuit in many sensor applications. Low‐noise JFET devices are used as input pair of the input differential stages or source‐grounded output load devices, which are dominant in the total noise floor of DDA circuits. A fully differential amplifier circuit with pure CMOS DDA and three types of JFET‐CMOS DDAs were fabricated and their noise performances were compared. The results show that the total noise floor of the JFET‐CMOS amplifier was much lower compared to that of the pure CMOS configuration. The noise‐reduction effect of JFET replacement depends on the circuit configuration. The noise reduction effect by JFET device was maximum of about − 18 dB at 2.5 Hz. JFET‐CMOS technology is very effective in improving the signal‐to‐noise ratio (SNR) of a sensor interface circuit with CMOS‐based sensing systems. © 2008 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

11.
An efficient analytical method for calculating the propagation delay and the short‐circuit power dissipation of CMOS gates is introduced in this paper. Key factors that determine the operation of a gate, such as the different modes of operation of serially connected transistors, the starting point of conduction, the parasitic behaviour of the short‐circuiting block of a gate and the behaviour of parallel transistor structures are analysed and properly modelled. The analysis is performed taking into account second‐order effects of short‐channel devices and for non‐zero transition time inputs. Analytical expressions for the output waveform, the propagation delay and the short‐circuit power dissipation are obtained by solving the differential equations that govern the operation of the gate. The calculated results are in excellent agreement with SPICE simulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
A low noise and high linearity down‐conversion CMOS mixer for 2.4‐GHz wireless receiver is presented in this paper. Using a sub‐harmonic balun with a simple but effective B‐type amplifier, the local oscillator frequency required for this mixer has been reduced by half, and the input local oscillator signal could be single‐ended rather than differential, which simultaneously simplifies the design of local oscillator. A distortion and noise cancelation transconductor in association with current bleeding technique is employed to improve the noise and linearity of the entire mixer under a reduced bias current without compromising the voltage gain. Fabricated in a 0.18‐µm RF CMOS technology of Global Foundries, the mixer demonstrates a voltage gain of 15.8 dB and input‐referred third‐order intercept point of 6.6 dBm with a noise figure of 2.6 dB. It consumes 7.65 mA from a 1.0‐V supply and occupies a compact area of 0.75 × 0.71 mm2 including all test pads. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Fractional‐order blocks, including differentiators, lossy and lossless integrators as well as filters of order 1 + a (0 < a < 1), are presented in this paper. The proposed topologies offer the benefit of ultra low‐voltage operation; in addition, reduced circuit complexity is achieved compared to the corresponding companding schemes, which have been already introduced in the literature. The ultra‐low voltage operation is performed through the employment of metal oxide semiconductor transistors biased in the subthreshold region. The reduction of circuit complexity is achieved through the utilization of current mirrors as active elements for realizing the required building blocks. The performance of the proposed fractional‐order circuits has been evaluated through the Analog Design Environment of the Cadence software and the design kit provided by the Taiwan Semiconductor Manufacturing Company (TSMC) 180 nm complementary metal oxide semiconductor process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The paper offers an algorithm for local and global parametric diagnosis in nonlinear analog circuits, including both identification of the faulty parameters and determination their values. The algorithm exploits a nonlinear algebraic type test equations which may possess multiple solutions, corresponding to different sets of the parameters values which meet the test. To find the solutions, the homotopy concept is applied. Since the test equation is not given in explicit analytical form, the simplicial method is used to trace the homotopy path. The proposed approach can be applied to a broad class of analog circuits, including the complementary metal–oxide–semiconductor circuits fabricated in nanometer technology. The developed diagnostic procedure has been implemented in DELPHI, whereas the required by the algorithm repeated circuit analyses are carried out using IsSPICE 4 and both environments have been joined together. For illustration, two numerical examples are given. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A voltage reference consisting of only two nMOS transistors with different threshold voltages is presented. Measurements performed on 23 samples from a single batch show a mean reference voltage of 275.4 mV. The subthreshold conduction and the low number of transistors enable to achieve a mean power consumption of only 40 pW. The minimum supply voltage is 0.45 V, which coincides with the lowest value reported so far. The mean TC in the temperature range from 0 to 120 °C is 105.4 ppm/°C, while the mean line sensitivity is 0.46%/V in the supply voltage range 0.45–1.8 V. The occupied area is 0.018 mm2. The power supply rejection rate without any filtering capacitor is ?48 dB at 20 Hz and ?29.2 dB at 10 kHz. Thanks to large area transistors and to a careful layout, the coefficient of variation of the reference voltage is only 0.62%. We introduce as a new figure of merit, the voltage temperature parameter (VTP), which gives a direct measure of the overall percentage variation of the reference voltage on the typical 2D domain of supply voltage and temperature. For the proposed circuit, the average VTP is 1.70% with a standard deviation of 0.21%. In order to investigate the effect of transistor area on process variability, a 4X replica of the proposed configuration has been fabricated and tested as well. Except for LS, the 4X replica doesn't exhibit any appreciable improvement with respect to the basic voltage reference. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper reports a novel oscillator circuit topology based on a transformer‐coupled π‐network. As a case study, the proposed oscillator topology has been designed and studied for 60 GHz applications in the frame of the emerging fifth generation wireless communications. The analytical expression of the oscillation frequency is derived and validated through circuit simulations. The root‐locus analysis shows that oscillations occur only at that resonant frequency of the LC tank. Moreover, a closed‐form expression for the quality factor (Q) of the LC tank is derived which shows the enhancement of the equivalent quality factor of the LC tank due to the transformer‐coupling. Last, a phase noise analysis is reported and the analytical expressions of phase noise due to flicker and thermal noise sources are derived and validated by the results obtained through SpectreRF simulations in the Cadence design environment with a 28 nm CMOS process design kit commercially available. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper introduces the iterative feedback tuning (IFT) into a Youla parameterization scheme for fault‐tolerant control. By off‐line IFT‐experiments of tuning Youla parameters, the proposed algorithm deals with a number of conditional failures that are described by the dual Youla parameter. The main contribution of this paper is to show how Youla scheme‐based IFT can be constructed for multivariable linear time‐invariant systems. Particular attention is given to the issue of the structure of the Youla parameter (filter), in which both finite impulse response and infinite impulse response filters are presented and compared. As an illustration, the method is applied to a simulation model of a continuous stirred tank heater system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A novel approach for obtaining the output waveform, the propagation delay and the short‐circuit power dissipation of a CMOS inverter is introduced. The output voltage is calculated by solving the circuit differential equation only for the conducting transistor while the effect of the short‐circuit current is considered as an additional charge, which has to be discharged through the conducting transistor causing a shift to the output waveform. The short‐circuit current as well as the corresponding discharging current are accurately predicted as functions of the required time shift of the output waveform. A program has been developed that implements the proposed method and the results prove that a significant speed improvement can be gained with a minor penalty in accuracy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The leap‐frog (LF) configuration is an important structure in analogue filter design. Voltage‐mode LF OTA‐C filters have recently been studied in the literature; however, general explicit formulas do not exist for current‐mode LF OTA‐C filters and there is also need for current‐mode LF‐based OTA‐C structures for realization of arbitrary transmission zeros. Three current‐mode OTA‐C structures are presented, including the basic LF structure and LF filters with an input distributor or an output summer. They can realize all‐pole characteristics and functions with arbitrary transmission zeros. Explicit design formulas are derived directly from these structures for the synthesis of, respectively, all‐pole and arbitrary zero filter characteristics of up to the sixth order. The filter structures are regular and the design formulas are straightforward to use. As an illustrative example, a 300 MHz seventh‐order linear phase low‐pass filter with zeros is presented. The filter is implemented using a fully differential linear operational transconductance amplifier (OTA) based on a source degeneration topology. Simulations in a standard TSMC 0.18µm CMOS process with 2.5 V power supply have shown that the cutoff frequency of the filter ranges from 260 to 320 MHz, group delay ripple is about 4.5% over the whole tuning range, noise of the filter is 420nA/√Hz, dynamic range is 66 dB and power consumption is 200 mW. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, two new techniques are proposed to improve the second‐order input intercept point (IIP2) and conversion‐gain in double‐balanced Gilbert‐cell complementary metal‐oxide semiconductor (CMOS) mixers. The proposed IIP2 improvement technique is based on canceling the common‐mode second‐order intermodulation (IM2) component at the output current of the transconductance stage. Additionally, the conversion‐gain is improved by increasing the fundamental component of the transconductance stage output current and creating a negative capacitance to cancel the parasitic capacitors. Moreover, in the proposed IM2 cancelation technique, by decreasing the bias current of the switching transistors, the flicker noise of the mixer is reduced. The proposed mixer has been designed with input frequency and output bandwidth equal to 2.4 GHz and 20 MHz, respectively. Spectre‐RF simulation results show that the proposed techniques simultaneously improve IIP2 and conversion‐gain by approximately 23.2 and 5.7 dB, respectively, in comparison with the conventional mixer with the same power consumption. Also, the noise figure (NF) at 20 kHz, where the flicker noise is dominant, is reduced by 4.9 dB. The average NF is increased nearly 0.9 dB, and the value of third‐order input intercept point (IIP3) is decreased approximately 1.8 dB. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号