首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a complete analysis of single and concurrent modes in fourth‐order LC‐voltage‐controlled oscillators ( VCOs), which are increasingly applied in dual‐band communication systems. We give a procedure based on the averaging method that simplifies the derivation of the abridged equations, which are derived without resorting to a change of co‐ordinates. The amplitudes of the oscillatory modes in steady state and in transient are found in explicit form. Conditions for the stability of the single and concurrent modes are derived, which apply to any active one‐port dual‐band LC‐VCO and allow one to predict the nonlinearities ensuring the occurrence of a stable concurrent mode. Numerical and experimental results show a good accuracy of the presented formulas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Over the past few years, with lower power consumption, reasonable layout area, and the ease of integration with standard circuit design technologies compared to the other counterparts, delay stage ring voltage‐controlled oscillators (VCOs) have been in the limelight of microelectronics scientists. However, few efforts have focused on representing high‐performance delay stage ring VCOs in the deep nanometric regime. In this regard, by virtue of outstanding electrical properties of carbon nanotube wrap‐gate transistors, this work aims to propose a carbon nanotube field‐effect transistor (CNTFET)–based delay stage ring VCO. After performing rigorous simulations, the proposed ring VCO which has been designed by 10‐nm gate‐all‐around (GAA) CNTFET technology shows suitable electrical performance metrics. The simulation results demonstrate that the proposed GAA‐CNTFET‐based ring VCO consumes 85.176 μW at with a 6.12‐ to 10.42‐GHz frequency tuning range. At the worst‐case noise conditions, the proposed design presents ‐90.747 dBc/Hz phase noise at 1 MHz offset frequency. With occupying 1.414 μm2 physical area, the proposed VCO is appropriate for the ultracompact nanoscale radio frequency apparatus. Our simulation results accentuate that with further improvements and commercializing the fabrication techniques for CNTFET transistors, the proposed GAA‐CNTFET‐based VCO can be considered as a potential candidate for X‐band satellite communication applications.  相似文献   

3.
This paper introduces two voltage‐controlled memristor‐based reactance‐less oscillators with analytical and circuit simulations. Two different topologies which are R‐M and M‐R are discussed as a function of the reference voltage where the generalized formulas of the oscillation frequency and conditions for oscillation for each topology are derived. The effect of the reference voltage on the circuit performance is studied and validated through different examples using PSpice simulations. A memristor‐based voltage‐controlled oscillator (VCO) is introduced as an application for the proposed circuits which is nano‐size and more efficient compared to the conventional VCOs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a buck‐boost converter circuit for wireless power transfer via inductive links in bio‐implantable systems is presented. The idea is based on reusing the power receiver coil to design a regulator. This method employs five switches to utilize the coil inductor in a frequency other than the power‐receiving signal frequency. Reusing the coil inductor decreases the on‐chip regulator area and makes it suitable for bio‐implants. Furthermore, in the proposed technique, the regulator efficiency becomes almost independent of the coil receiving voltage amplitude. The proposed concept is employed in a buck‐boost regulator, and simulation results are provided. For a 10 MHz received signal with the amplitude variation within 3 ~ 6 V and with the converter switching rate of 200 kHz, the achieved maximum efficiency is 78%. The proposed regulator can also deliver 10 μA to 4 mA to its load while its output voltage varies from 0.6 to 2.3 V. Simulations of the proposed converter are performed in Cadence‐Spectre using TSMC 0.18 μm CMOS technology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This paper reports a novel oscillator circuit topology based on a transformer‐coupled π‐network. As a case study, the proposed oscillator topology has been designed and studied for 60 GHz applications in the frame of the emerging fifth generation wireless communications. The analytical expression of the oscillation frequency is derived and validated through circuit simulations. The root‐locus analysis shows that oscillations occur only at that resonant frequency of the LC tank. Moreover, a closed‐form expression for the quality factor (Q) of the LC tank is derived which shows the enhancement of the equivalent quality factor of the LC tank due to the transformer‐coupling. Last, a phase noise analysis is reported and the analytical expressions of phase noise due to flicker and thermal noise sources are derived and validated by the results obtained through SpectreRF simulations in the Cadence design environment with a 28 nm CMOS process design kit commercially available. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A novel fully integrated CMOS LC tank VCO is presented. The LC tanks are implemented by exploiting the active circuit ‘boot‐strapped inductor’ (BSI), which behaves like a high‐quality factor inductor. Particularly, the LC tanks have been implemented by introducing a new version of the CMOS BSI circuit, which provides better versatility and design reliability. In order to verify the effectiveness of such an approach, a case study for 5–6 GHz direct‐conversion multi‐standard WLAN transceivers is presented. The VCO has been designed in a 0.35µm standard CMOS technology. The new BSI exhibits a high‐quality factor (higher than 25 over the all frequency range) and provides a high selectivity without introducing a relevant excess of noise, for a better spectral purity and a lower phase noise (PN) of the VCO. The overall VCO circuit consumes 9 mW. The VCO produces an oscillation in the tuning range from 4.91 to 5.93 GHz (nearly equal to 19%). The circuit exhibits a PN of ?129dBc/Hz at 1 MHz of frequency offset from the central frequency (5.4 GHz) and a FOM equal to 189.5 dBc/Hz at 100 kHz and 194.1 dBc/Hz at 1 MHz of frequency offset, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A new current‐reuse voltage‐controlled oscillator (VCO)‐buffer with enhanced load drivability is proposed. It incorporates a PMOS‐based source follower stacked atop a NMOS‐based LC VCO to share the bias current, while preventing the voltage stress at any oscillation node from exceeding the 1.2‐V technology voltage limit. Also, ac‐coupling networks are avoided between the VCO and buffer, improving the Q of the LC tank while minimizing parasitics. With internal buffering, the VCO can directly drive up a 50‐Ω load for testing, or to withstand a large capacitive load in on‐chip local oscillator distribution, particularly suitable for multi‐band MIMO WLAN radios . The fabricated VCO‐buffer in 65‐nm CMOS measures 13.8% tuning range from 5.64 to 6.4 GHz, consumes 3.6 mW at 1.2 V and exhibits ?108.84 dBc/Hz phase noise at 1‐MHz offset. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A new type of filter approximation, which utilizes orthonormal Legendre polynomials, referred to as sum‐of‐squared Legendre polynomials, is presented in this paper. Power transmission coefficient and the group delay of the proposed filter are compared with those of the Butterworth, Legendre–Papoulis, and Halpern filters. In order to illustrate the design of the proposed filter function, sum‐of‐squared Legendre polynomials coefficients and normalized element values of the low‐pass LC (inductor‐capacitor) ladder network prototype are given, up to the 10th degree. For continuous‐time domain filtering, doubly terminated LC ladder network topologies have very low sensitivities to changes of component values. In order to determine the effect of variation of all reactive components on the filter attenuation characteristic, the new sensitivity function has been proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A novel wide locking range divide‐by‐2 injection‐locked frequency divider (ILFD) is proposed in the paper and was implemented in the TSMC 0.18‐µm 1P6M CMOS process. The divide‐by‐2 ILFD is based on a cross‐coupled voltage‐controlled oscillator (VCO) with an LC resonator and injection MOSFETs with source voltage coupled from ILFD output, and the injection MOSFET mixer is biased in subthreshold region. At the drain–source bias of 0.9 V, and at the incident power of 0 dBm the locking range of the divide‐by‐2 ILFD is 6.4 GHz; from the incident frequency 3.7 GHz to 10.1 GHz, the percentage is 92.75%. The core power consumption is 16.56 mW. The die area is 0.839 × 0.566 mm2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A new Cockcroft–Walton (CW)‐type high‐voltage DC generator with RF air‐core transformer used as a step‐up transformer has been developed. The design concept of the air‐core transformer is shown, which is operated on the resonance condition between the inductance of the secondary coil and the stray capacitance of CW circuit with the conical‐type coil structure. Adapting the RF air‐core transformer to CW circuit with DC‐300 kV 100 mA, excellent performances have been demonstrated. In the new CW circuit, it results in downsizing of capacitors to operate at higher frequency than conventional ones, and reduction of the volume by approximately 40% has been shown in the typical DC generator with 1 MV 100 mA. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 160(1): 18–26, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20500  相似文献   

11.
A method for analyzing the nonlinear dynamics of the injection‐locked frequency dividers in synchronized operation mode is presented, including the stability analysis of locked states. We use a specific divide‐by‐two circuit, namely a differential LC CMOS divider with a complementary topology, as a guideline for presentation, showing that the sizing of the devices significantly affects the synchronization mechanism of the divider, which exhibits a very rich dynamical behavior. We provide closed‐form expressions to determine the amplitude and the phase in the locked state, as well as the locking range, leading to accurate results, which are validated by numerical simulations. The presented analysis of the frequency divider dynamics enables us to establish that stable locked oscillations occur on the whole locking range predicted by the well‐known Adler's equation and that these are possible also beyond that range. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Relaxation RC‐oscillators are notorious for their poor phase‐noise performance. However, there are reasons to expect a phase‐noise reduction in quadrature oscillators obtained by cross‐coupling two relaxation oscillators. We present measurements on 5 GHz oscillators, which show that in RC‐oscillators the coupling reduces both the phase‐noise and quadrature error, whereas in LC‐oscillators the coupling reduces the quadrature error, but increases the phase‐noise. A comparison using standard figures of merit indicates that quadrature RC‐oscillators may be a viable alternative to LC‐oscillators when area and cost are to be minimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
High field is very favorable for magnetically confined fusion devices such as a tokamak, but electromagnetic force derived from the field becomes a fatal problem. In particular, the largest in‐plane centering force hinders toroidal field coils from operating at higher fields. Variable pitch multihelical coils, which we term force‐balanced coils (FBCs), by which this force is drastically reduced, are proposed for the coil system of tokamaks. FBCs can also provide poloidal flux swing for plasma breakdown and current induction during the ramp‐up phase of the coil current. In this paper, we indicate how to design FBCs for tokamaks. The fusion reactor‐size FBCs are designed and compared with that of the conventional toroidal field coil system. © 1999 Scripta Technica, Electr Eng Jpn, 130(3): 39–48, 2000  相似文献   

14.
15.
We present a systematic non‐linear analysis of differential voltage controlled oscillators (VCOs), both bipolar and MOS. Using the standard device models, we derive the second‐order non‐linear equation describing the behaviour of these oscillators, which is formulated in a perturbation form. The solution of this equation is obtained as a particular case of the solution of the most general equation of second‐order oscillators, which is solved through a suitable perturbation method. Unlike a pure numerical analysis, simple analytical relationships are derived for predicting the steady‐state oscillation, its transient behaviour and for ascertaining the existence of a stable oscillation in differential VCOs. These relationships, leading to results which well agree with the SPICE simulations, are useful in both analysis and design. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents design and analysis of low‐speed, high‐torque permanent magnet motors. The motor has 16‐pole, 18‐coil construction, and a unique winding arrangement to produce high torque. The simplified torque analysis is proposed considering the line of magnetic induction distribution in the motor. The validity of the proposed analysis has been proved by both linear and nonlinear FEM analyses. The 500‐Nm, 200‐rpm test motor has been designed and constructed and the motor shows the expected characteristics. © 2000 Scripta Technica, Electr Eng Jpn, 132(3): 48–56, 2000  相似文献   

17.
We have designed and developed a tri‐stable rotary solenoid actuator, which has a simple structure and simple operation. The plunger has two stabilities at the extreme positions along an angular stroke and the third stability at the center of it. The third has been successively achieved by using the electromagnetic restoring torque, which is designed to be larger than the inertia torque. The dynamic characteristics were determined by utilizing an optimal design program that is specially constructed based on the response surface method in order to design the coil winding and the power supply for the coil excitation. A prototype solenoid was constructed and used to verify the tri‐stable motions and accuracy of the previously constructed design program.  相似文献   

18.
In a quartz crystal oscillator circuit, an LC resonance circuit was inserted that enabled major enlargement of the variable range of frequency compared with the conventional Colpitts or Pierce quartz crystal oscillator. The short‐term stability of the oscillation was measured with Allan variance in the intermediate region between the quartz resonance and LC resonance, showing higher stability compared with the common LC oscillator. The analytical result is presented showing continuous transition from the quartz resonance to the LC resonance. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

19.
This paper presents an optimum design approach for low‐speed, high‐torque permanent magnet motors. The approach is divided into two steps: the first consists of the rough estimation of torque by linear analysis, and the second the optimization of the motor configuration by nonlinear FEM analysis. Under restricted dimensional specifications and electrical requirements, a 16‐pole, 18‐coil permanent magnet motor with a rating of 600 Nm and 300 rpm was designed and constructed. © 2001 Scripta Technica, Electr Eng Jpn, 135(4): 52–63, 2001  相似文献   

20.
This paper presents a resonance‐based wireless power transfer system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. We theoretically analyzed the system and characterized it by measuring its inductance, self‐resonant frequency, and quality factor Q. In our resonance‐based wireless power transfer prototype, we proposed a 3‐coil system, using two 15‐mm radius implantable coils, with a resonance frequency of 6.76 MHz. This system can effectively transfer power for a distance of up to 50 mm. Moreover, our proposed 3‐coil system can achieve a high Q‐factor and has a comparable power transfer efficiency (PTE) to previously reported works about 3‐coil and 4‐coil systems. The experimental PTE can achieve 82.4% at a separation distance of 20 mm and more than 10% PTE at a distance of 40 mm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号