首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalized model of the dynamics (GMD) of DC‐DC power electronic converters (PECs) is discussed in this paper. It is a geometrical piecewise‐affine continuous‐time model. The general idea of the GMD is to determine the local dynamic behavior of trajectories on the faces of the PEC commutation structure, which is a geometrical model of its commutation. This allows us to establish the direction of PEC dynamics on these faces. It can be either ‘entering’ into specific regions in state space or ‘exiting’ from them. Therefore, the local PEC dynamics can be treated as logical (two‐state). In practice, the GMD can be used for the analysis of PEC practical stability, which is a completely different concept from the concept of PEC stability in the classical Lyapunov sense. An outline of the design‐oriented approach to PEC practical stability analysis, which is based on the GMD, has also been presented. As illustrative examples, the GMD of a boost converter under peak current‐mode control and its application are presented. These examples show that the Lyapunov stability of a given PEC does not imply its practical stability, and that the results of PEC Lyapunov stability analysis and practical stability analysis are complementary to each other. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper proposes a bidirectional isolated DC–DC converter with an active clamp circuit and two novel control methods in the buck mode. A circulating current reduction method decreases the conduction loss. A commutation overlap period reduction method maintains the output power by expanding the maximum actual duty cycle even if the input voltage decreases. The experimental results show that the proposed method increased the maximum output 1.5 times, without increasing the voltage applied to the low‐voltage side MOSFETs under the minimum input voltage condition. A 2‐kW class prototype showed a higher than 90% efficiency over a wide operating range for a greater than 20 input–output voltage ratio at 100‐kHz switching frequency.  相似文献   

3.
Multi‐cell converters have been developed to overcome shortcomings in usual switching devices. The control system in these circuits is twofold: first, to balance voltages of the switches and second to regulate the load current to a desired value. However, with a purely proportional controller, the system presents a static error. With a PI controller the static error is annihilated, but at the expense of shortening the stability region and increasing settling time. In this work, a zero static error dynamic controller for a two‐cell DC–DC buck converter is designed. To achieve zero current error, we propose a generalized scheme of a dynamic controller. Then, using nonlinear analysis and Lyapunov stability theory and bifurcation prediction tools, we prove that zero static error is achieved. The proposed controller outperforms the PI controller in terms of settling time in the presence of saturating effect during the start‐up transients. Numerical simulations in the form of time domain waveforms and bifurcation diagrams from switched circuit‐based model are presented to confirm our theoretical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
无刷直流电动机(BLDCM)存在转矩脉动的突出缺点,提出了一种基于直流环节电压控制和模糊PID控制器的新型混合控制策略,以抑制无刷直流电机的转矩脉。电路拓扑包含功率因数校正降压转换器和逆变器。降压转换器通过控制直流电路电压来降低换向转矩脉动,使用模糊PID控制器和脉冲宽度调制(PWM)技术的逆变器在导通区域提供适当的电流。 Buck变换器降低了通过控制直流环节电压换向转矩脉动,逆变器使用模糊PID和PWM技术提供导通区域的电流。该方法能够消除传导区转矩脉动,削弱换相区转矩脉动,仿真结果表明,该策略具有功率因数校正功能,可有效抑制转矩脉动,提升电机运行的鲁棒性。  相似文献   

5.
This paper presents the operating point stability analysis of a Single Machine Infinite Bus (SMIB) power system equipped with high Photovoltaic (PV) penetration. The detailed dynamical model of the synchronous generator in dq reference frame is considered including the dynamics of the damper windings and Automatic Voltage Regulator (AVR). A DC–DC buck–boost switch mode converter is placed as an intermediate stage between the PV array and the inverter. The main function of this implementation is to inject the voltage corresponding to the PV generator Maximum Power Point (MPP) by automatic adjusting its duty cycle. The PV array is designed to provide a maximum output power of about 0.78 pu at the full solar irradiance. The nonlinearity of the output characteristics of the PV generator is taken into account. Operating point stability analysis is performed by extracting the eigenvalues of the linearized model around the operating point at different solar irradiances. System response after successive step changes on the synchronous generator input mechanical power at three solar irradiances based on the complete nonlinear dynamical model is investigated. For given synchronous generator input parameters, the response of the system after successive step changes on the solar intensity is addressed. It is found that high PV penetration via DC–DC buck–boost converter and DC–AC inverter is practically possible, experiences a stable operating point and can withstand successive step changes on system parameters in case of practical solar irradiance levels. All numerical simulations are conducted using MATLAB software package by building the code required.  相似文献   

6.
基于新型换流变压器的直流输电系统改善换相的机理   总被引:1,自引:0,他引:1  
基于新型换流变压器的直流输电系统在换流变压器阀侧滤除主要特征谐波,势必会对系统换相特性产生一定的影响。探讨了逆变器换相失败的根本原因,分别建立直流输电系统采用传统换流变压器与新型换流变压器时阀侧线电压的数学模型。在此基础上,分析未接入滤波器和接入滤波器时变压器漏抗及耦合电抗对逆变器换相的影响。结果表明,通过滤波,基于新型换流变压器与基于传统换流变压器的直流输电系统均能消除耦合电抗的不良影响,但前者可大大削弱变压器漏抗的消极作用,后者没有任何削弱,说明基于新型换流变压器的直流输电系统在改善换相方面具有独特的优越性。实验证实了数学模型及理论分析的正确性。  相似文献   

7.
The quadratic DC‐DC converter can broaden the voltage conversion ratio, which meets the requirements of wide input voltage. However, large‐scale variation of input voltage puts forward harsh requirements on ability to resist input disturbance of control strategy. Quadratic buck converter (QBC) is pulsed nonlinear dynamic systems, so the one‐cycle control strategy based on robustness principle may provide better rejection of power source than the linear feedback control. But the traditional one‐cycle controlled QBC (TOCCQBC) suffers from poor ability against load disturbance and steady‐state error. To overcome aforementioned shortages, an improved OCCQBC is proposed by adding inductor current to diode voltage as integral variable and introducing feedback of output voltage. The paper first introduces the working principle of the QBC, and second, the OCCQBC is presented. Then, a mathematical model using small signal analysis of the OCCQBC is established, and an experimental prototype with a power of 6 W is set up. Simulation and experimental results verify the correctness of the theoretical analysis and the feasibility of the strategy.  相似文献   

8.
混合级联型多落点直流输电系统整流侧为换相换流器(LCC),逆变侧为LCC和模块化多电平换流器(MMC)组串联的拓扑结构,可以有效抑制换相失败,具备大容量功率传输的优势。建立了单极混合级联型多落点直流输电系统,针对系统中LCC送受端交流故障引发的直流功率降低、逆变侧换相失败以及受端低端MMC子系统产生的功率反向问题进行了研究,提出了一种提升系统稳定性的协调控制策略。该策略通过改变逆变侧直流电压来维持交流系统故障后功率传输的稳定性,可防止受端MMC功率反送。PSCAD/EMTDC仿真结果验证了所提协调控制策略的有效性。  相似文献   

9.
BUCK DC/DC变换器分岔和混沌的精确离散模型及实验研究   总被引:18,自引:15,他引:18  
用数学模型精确地描述以及用实验验证DC/DC变换器的分岔和混沌现象一直具有较大的难度,从而导致以往理论研究结果的真实性受到质疑。为此该文以Buck DC/DC变换器为具体研究对象,提出其分岔和混沌分析精确离散建模方法,建立了它的精确离散数学模型。基于此模型进一步分析Buck DC/DC变换器分岔稳定性和混沌特性,改进了现有近似的模型的研究结果。同时文中还进行了丰富的实验研究,证实了该文精确数学模型的正确性,并实际展现了Buck DC/DC变换器从分岔至混沌演化的全过程。该文的研究方法也为其它DC/DC变换器的分岔和混沌现象提供了理论和实验基础,具有一般性意义。  相似文献   

10.
In this paper, a two‐switch high‐frequency flyback transformer‐type zero voltage soft‐switching PWM DC‐DC converter using IGBTs is proposed. Effective applications for this power converter can be found in auxiliary power supplies of rolling stock transportation and electric vehicles. This power converter is basically composed of two active power switches and a flyback high‐frequency transformer. In addition to these, two passive lossless snubbers with power regeneration loops for energy recovery, consisting of a three‐winding auxiliary high‐frequency transformer, auxiliary capacitors and diodes are introduced to achieve zero voltage soft switching from light to full load conditions. Furthermore, this power converter has some advantages such as low cost circuit configuration, simple control scheme, and high efficiency. Its operating principle is described and to determine circuit parameters, some practical design considerations are discussed. The effectiveness of the proposed power converter is evaluated and compared with the hard switching PWM DC‐DC converter from an experimental point of view, and the comparative electromagnetic conduction and radiation noise characteristics of both DC‐DC power converter circuits are also depicted. © 2005 Wiley Periodicals, Inc. Electr Eng Jpn, 152(3): 74–81, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20081  相似文献   

11.
This letter presents a method for improving the transient response of DC‐DC converters. The proposed technique replaces the conventional error amplifier with a combination of two different amplifiers to achieve a high loop gain and high slew rate. In addition, a rapid output‐voltage control circuit is employed to further reduce the recovery time. The proposed technique was applied to a four‐phase buck converter, and the chip was implemented using a 0.18‐μm CMOS process. The switching frequency of each phase was set at 2 MHz. Using a supply voltage of 2.7–5.5 V and an output voltage of 0.6–1.5 V, the regulator provided up to 2‐A load current with maximum measured recovery time of only 6.2 and 6.5 μs for increasing and decreasing load current, respectively. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
受多馈入直流系统中各直流输电线路之间耦合特性影响,单一交流故障产生的谐波分量通过交流系统对多回直流线路进行干扰,易引发同时换相失败。基于换流器开关调制理论建立交流故障暂态过程中多馈入直流系统内谐波传变回路模型,分析谐波分量的产生机制和传变路径,分析交流故障导致多馈入直流系统发生同时换相失败的机理。将故障后多馈入直流系统内换相的动态演变过程划分为不同阶段,总结各阶段的换相特征发现,近端换流站发生换相失败后,通过交流侧联络通道扩散的故障电流分量引发同时换相失败的关键因素。提出基于联络通道电流检测的同时换相失败预防控制策略,通过检测联络通道异常电流使远端换流站对近端换流站发生的换相失败快速反应以减小发生同时换相失败的风险。以河南特高压多馈入直流系统为例进行仿真验证,仿真结果证明了所提控制策略的有效性。  相似文献   

13.
An indirect control variable for improving the control‐to‐output characteristics of a Pulse Width Modulation (PWM) buck‐boost converter is introduced in this letter. The voltage gain and the small‐signal model of the buck‐boost converter are reviewed. The actual voltage command at one input of the PWM comparator is from the proposed indirect control variable and the peak value of the high‐frequency PWM carrier. The resulted voltage gain function appears proportional to this indirect control command. Also the dependence of the DC gain of the control‐to‐output transfer function on the duty cycle is eliminated. Experimental results conform well to the theoretical analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
介绍了DC/DC变换器的种类,讨论了软开关的工作原理和零电压开关及零电流开关的实现方式。并对BUCK变换器的零电流准谐振电路和Boost变换器的零电压准谐电流进行仿真分析。  相似文献   

15.
杜辰韬  郑嘉扬 《微电机》2022,(7):99-106+117
针对多电飞机电气系统结构日益复杂,其稳定性也愈加重要的现状,研究了电气系统中主电源、应急电源和负载模型的控制方法以及相互之间的影响。首先,详细介绍了基于SVPWM的双闭环控制下永磁同步发电机和电动机的运行策略;其次,分析了28 V航空蓄电池适配的双向DC/DC变换器的设计方法,并基于半桥拓扑设计和改进了电压电流双闭环控制方法;接着以恒功率负载为切入点,使用李雅普诺夫第一法和变换器的小信号模型分析,分别讨论了在不同运行状况下的系统稳定性。在Matlab/Simulink平台上搭建了电气系统仿真模型,仿真结果表明:恒功率负载对多电飞机电气系统的稳定性有较大的影响,而并网电气系统的抗干扰能力较强,且在运行状况切换时动态响应快,从而验证了模型的可靠性。  相似文献   

16.
随着交直流混联输电技术的发展,换流站保护的研究日益重要。根据换流站交流母线电压和换流器输出直流电压之间的换流关系,定义了广义变比,提出了基于广义变比的换流站集成保护新方法。该方法运用集成保护的思想对换流站进行区域划分,利用广义变比实现换流元件异常或故障的实时在线监测,并根据换流变压器阀侧套管CT电流特征进行故障元件的准确定位。通过故障分析和EMTDC/PSCAD仿真验证,保护在换流元件各种故障情况下均能正确动作。  相似文献   

17.
A five‐element multiplex resonant (LLCLC) full‐bridge DC‐DC converter controlled by pulse frequency modulation (PFM) is proposed in this paper. The high frequency (HF)‐link resonant DC‐DC converter proposed herein can perform wide‐range output power and voltage regulation with a narrow frequency range due to an antiresonant tank that works effectively as a wide‐range variable inductor. The advantageous characteristics of the antiresonant tank provide overcurrent protection in the case of the short‐circuited load condition as well as in the startup interval. Thus, the technical challenges of a conventional LLC DC‐DC converter can be overcome, and the reliability of the relevant switch‐mode power supplies can be improved. The operating principle of the LLCLC DC‐DC converter is described, after which its performance is evaluated in an experimental setup based on the 2.5 kW prototype. Finally, the feasibility of the proposed DC‐DC converter is discussed from a practical point of view.  相似文献   

18.
电容换相换流器(capacitor commutated converter,CCC)是通过对传统直流输电系统主回路结构进行改造,串入适当的电容,补偿换流器吸收的无功功率,使得实际的换相电压在幅值和相位上发生变化,从而减少了换流器无功功率的吸收,降低了逆变侧发生换相失败的概率,提高了直流系统运行的稳定性。但是,在拥有上述优点的同时,CCC直流系统也有其固有的缺陷,为此首先对整流侧、逆变侧基于CCC的高压直流输电系统机理、稳态特性进行了研究,并基于电磁暂态仿真软件(PSCAD)建立的模型进行了仿真验证,将结果与传统直流输电系统进行了对比;重点分析了CCC直流输电系统抵御换相失败特性、逆变侧单相短路故障后的恢复特性和持续故障机理,研究了串联电容大小对恢复过程的影响。研究结果对于进一步优化CCC直流输电系统的动态特性及推广CCC直流输电技术具有重要意义。  相似文献   

19.
A capacitor commutated converter (CCC) has a simple circuit topology of a series capacitor placed between the valve and the converter transformer in each phase. The series capacitor mitigates the inverter operation of a CCC by assisting the commutation with the voltage charged in it. However, it does not guarantee complete commutation in any conditions, for a valve does not have self‐extinction ability. Therefore, precise analysis of the commutation process of a CCC is required to secure its operation. First, the formulation of the interrelation among the converter parameters—AC voltage, DC voltage, firing delay angle, overlap angle, and effective commutation margin angle—is presented. The firing delay angle at a given effective margin angle is calculated by using the obtained equations, which can be applied to constant extinction angle control. Next, we assess the AC voltage stability of an AC/DC link, when constant extinction angle control is applied to the inverter of CCC. The calculated voltage stability factor (VSF) shows that the commutation capacitor improves the AC voltage stability of constant extinction angle control at the inverter linked to a weak AC system, but it differs by the rectifier operation mode and compensation factor of the commutation capacitor. © 2001 Scripta Technica, Electr Eng Jpn, 137(4): 38–47, 2001  相似文献   

20.
蔡鹏  谢少军 《电源学报》2006,4(2):131-137
本文分析了一种新型单相交流降压变换器AC_Buck,该变换器由简单的DC-DC电路Buck衍化而来,仅使用两个功率开关,结构简单,控制简便, 可实现交流-交流直接降压变换。本文对该变换器的工作原理进行了详细分析,并针对电路存在的功率管换流的关键问题,提出了采用RCD换流电路的解决方案,对该方案进行了详细分析。通过仿真和实验验证了采用RCD换流电路的AC_Buck变换器的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号