首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase‐locked loop circuit (PLL) cycle‐slips (CS) phenomenon is a problem in two‐level baseband clock and data recovery (CDR) data‐synchronization. A singular example is that of a CDR synchronizer that uses a PLL in cascaded with delay‐lock‐loop (P/DLL) architecture. The CS issue is most evident when testing jitter‐tolerance to sine‐modulated jitter, particularly for sine‐modulated jitter‐frequencies near the PLL bandwidth. Reuse of a bang‐bang frequency‐detector, already on board of reference‐less CDRs, does CS detection and provides for suppression producing a clean demodulation. In the cascaded‐DLL of Rhee's P/DLL [1], this CS‐suppressed PLL‐clock assures proper DLL operation to broadband the jitter‐tolerance recommendation of the synchronous optical network (SONET). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A low‐jitter and low‐power dissipation delay‐locked loop (DLL) is presented. A proposed multi‐band voltage control delay unit (MVCDU) is employed to extend the operation frequency of the DLL by controlling the delay cell within the MVCDU. The jitter of DLL is reduced due to MVCDU's low sensitivity. The delay cell in the MVCDU employs a differential configuration to further reduce the noise impact from the fluctuation in the supply and ground voltage. The operating frequency of the proposed DLL ranges from 120 to 420 MHz. The proposed design has been fabricated in a TSMC 0.18µm CMOS process. The measured RMS and peak‐to‐peak jitters are 4.86 and 34.55 ps, respectively, at an operating frequency of 300 MHz. The power dissipation is below 14.85 mW at an operating frequency of 420 MHz. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the design of an all‐digital delay‐locked loop (ADDLL) with duty‐cycle correction using reusable time‐to‐digital converter (TDC). The proposed ADDLL uses a reusable TDC for achieving a wide‐operating frequency range. In addition, it achieves the frequency doubling output clock easily by changing the quantization interval. It is implemented in a 0.18‐µm complementary metal‐oxide semiconductor technology. This circuit corrects the duty cycle and synchronizes the input and output clocks in 10 clock cycles. The output duty cycle is corrected to 50 ± 1.5% as the input duty cycle ranges from 25% to 75%. The acceptable input frequency range is from 300 to 900 MHz without frequency doubling. The acceptable input frequency range is from 150 to 450 MHz when using frequency doubling. It dissipates 6.2 mW from a 1.8‐V supply at 900 MHz. The peak‐to‐peak and RMS jitters at 900 MHz are 14 and 1.8 ps, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper proposes a new open‐loop and low complexity (small size) fast‐lock synchronization circuit for clock and data recovery in wearable systems. The system includes sensors embedded in textile and connected by conductive yarns. Synchronization is based on the open‐loop selection of the correct phase of the receiver clock synchronously with the incoming signal. The clock generator of the receiver is an autonomous oscillator set to operate at the same nominal frequency. The circuit lock time is at most one clock cycle, faster than all methods based on phase‐locked loops or delay‐locked loops. The circuit can be used for baseband communication independently of the signal coding method used in the physical layer, making it suitable for many applications. The fully digital circuit (including non‐return‐to‐zero inverted decoder) occupies 0.0022 in a 0.35 complementary metal‐oxide semiconductor (CMOS) process, a smaller implementation than many existing circuits, and supports a maximum system clock frequency of 70 for a 35‐data rate. Experimental results demonstrate that the proposed circuit robustly generates a synchronous clock for data recovery. The circuit is suitable for systems that tolerate some jitter but requires fast lock time, small size, and low energy consumption. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Emerging wide‐band communications and spectrum‐sensing systems demand support for multiple electronically scanned beams while maintaining a frequency independent, constant far‐field beam width. Realizing existing phased‐array technology on a digital scale is computationally intensive. Moreover, digitizing wide‐band signals at Nyquist rate requires complex high‐speed analog‐to‐digital converters (ADCs), which is challenging for real developments driven by the current ADC technology. A low‐complexity alternative proposed in this paper is the use of radio‐frequency (RF) channelizers for spectrum division followed by sub‐sampling of the RF sub‐bands, which results in extensive reduction of the necessary ADC operative frequency. The RF‐channelized array signals are directionally filtered using 2‐D digital filterbanks. This mixed‐domain RF/digital aperture array allows sub‐sampling, without utilizing multi‐rate 2‐D systolic arrays, which are difficult to realize in practice. Simulated examples showing 14–19 dB of rejection of wide‐band interference and noise for a processed bandwidth of 1.6 GHz are demonstrated. The sampling rate is 400 MHz. The proposed VLSI hardware uses a single‐phase clock signal of 400 MHz. Prototype hardware realizations and measurement using 65‐nm Xilinx field‐programmable gate arrays, as well as Cadence RTL synthesis results including gate counts, area‐time complexity, and dynamic power consumption for a 45‐nm CMOS circuit operating at B DC = 1.1 V, are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a fast‐corrected all‐digital duty‐cycle corrector (DCC) with synchronous input clock. The proposed DCC has many features, including fast locking in 4 cycles, wide range correction, and synchronous 50% duty‐cycle clock with an input clock. The circuit can operate from 500 to 900 MHz and corrects a wide range of input duty cycle ranging from 25 to 75%. The duty‐cycle error of the output clock is between ?2.4 and 2.7%. The largest static phase error between the input and output clock is ?44 ps at 900 MHz. The RMS and peak‐to‐peak jitters are 1.9 and 14.7 ps at 900 MHz, respectively. The proposed DCC is implemented in a 0.18‐µm complementary metal oxide semiconductor process. The proposed DCC occupies an area of 0.05 mm2 and dissipates 23 mW with 1.8‐V supply voltage at 900 MHz. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A systolic architecture has recently been proposed for implementing two‐dimensional infinite impulse response (IIR) space–time beam plane‐wave filters at a throughput of one‐frame‐per‐clock–cycle for such applications as real‐time broadband smart antennas. A novel polyphase systolic architecture is proposed here that further increases the throughput of these IIR beam filters, by a factor of M, to M‐frames‐per‐clock‐cycle, where M is the number of polyphases. The proposed method combines the polyphase approach, along with pipelining and look‐ahead optimization methods, to achieve frame sample frequencies that are several times higher than the clock‐cycle limit of the very large‐scale integration (VLSI) technology, thereby potentially allowing multi‐GHz frame sample frequencies using current custom VLSI circuits. The implementation of a field programmable gate array‐based real‐time prototype is described, tested and verified for the two‐phase case (M = 2) at a technology‐limited clock frequency of 50 MHz which corresponds to a throughput of 100 million‐frames‐per‐clock–cycle. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, a robust, low-power, widely linear multiphase clock generation and multiplying delay-locked loop (MPCG-MDLL) architecture is realized, using a new differential charge-mode delay element circuit topology. The heart of any MPCG-MDLL architecture is the delay element, and hence, the characteristics of the delay element influence the overall performance of the MPCG-MDLL, in terms of its specifications such as peak-to-peak jitter, lock range, delay range, control voltage range, and power consumption. The proposed eight-phase MPCG-MDLL along with the charge-mode delay element outperforms the conventional MPCG-MDLLs that deploy delay elements such as a current-starved inverter (CSI), wide-range CSI, triply controlled delay cell, digital-controlled delay element, and the like. The eight-phase MPCG-MDLL along with the new charge-mode delay element circuit topology is implemented in 1.2-V, 65-nm CMOS technology. The performance results show that the eight-stage delay line has a delay range from 640 to 960 ps over the rail-to-rail control voltage range. The implemented MPCG-DLL is robust over process, voltage, and temperature (PVT) corners and exhibits a lock range of 400 MHz and a peak-to-peak jitter of less than 60 fs for all the DLL output phases and peak-to-peak jitter of 0.54 and 1.24 ps for the synthesized 5-GHz clocks for an input reference clock frequency of 1.25 GHz. The MPCG-MDLL consumes 4.74 mW of power and occupies an area of 0.017 mm2.  相似文献   

9.
In conventional delay‐locked loop circuits, the charge and discharge of the charge pump result in mismatched current reflecting the size of the static phase error. The static phase error between feedback clock and reference clock is likely to be within tens or hundreds of picoseconds (ps). We thus propose an approach using digital calibration methods to reduce the charge pump current mismatch by means of the setup time of the D‐type flip flop. The setup time of D‐type flip flop is determined and duplicated to detect the phase error between the reference clock and feedback clock. It results in a very small static phase error between the reference clock and feedback clock. This paper used a 0.18 µm CMOS process design, with a reference frequency of 700 ~ 900 MHz. The active area is 0.031 mm2, and the phase error after correction is less than 5 ps. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A delay‐locked loop (DLL) based clock and data recovery (CDR) circuit with a half‐rate clock is proposed. The CDR includes a coarse and a fine tuned block, in which the novel coarse and fine phase detectors form closed loops. It is designed in a 65‐nm complementary metal‐oxide semiconductor (CMOS) process using a 1.2‐V supply voltage. The simulation results show that it can cover a wide operating range from 500 Mbps to 8 Gbps and the corresponding peak‐to‐peak jitters are 1.63 ps and 0.96 ps, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a technique for mitigating two well‐known DAC non‐idealities in continuous‐time delta‐sigma modulators (CTDSMs), particularly in wide‐band and low over‐sampling‐ratio (OSR) cases. This technique employs a special digital‐to‐analog convertor (DAC) waveform, called modified return‐to‐zero (MRZ), to reduce the time uncertainty effect because of the jittered clock at the sampling time instances and eliminate the effect of inter‐symbol‐interference (ISI) which degrades the modulator performance, especially when non‐return‐to‐zero (NRZ) DAC waveform is chosen in the modulator design. A third‐order single‐bit CTDSM is designed based on the proposed technique and step‐by‐step design procedure at circuit and system levels, considering clock jitter and ISI, is explained. Circuit simulations in 180‐nm CMOS technology show that in the presence of circuit non‐idealities which generate jitter and asymmetrical rise and fall times in the DAC current pulse, signal‐to‐noise‐distortion‐ratio (SNDR) of the proposed modulator is higher than the conventional modulator with NRZ waveform by about 10 dB. In these simulations, clock jitter standard deviation is 0.3% of the sampling period (TS) and the difference between fall/rise times in the DAC current pulse is 4%TS. Simulated at 600‐MHz sampling frequency (fS) with an oversampling ratio (OSR) of 24, SNDR figure of merit (FOMSNDR) of the proposed modulator in 180‐nm CMOS is 300 fj/conversion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A reference‐less all‐digital burst‐mode clock and data recovery circuit (CDR) is proposed in the paper. The burst‐mode CDR includes a coarse and a fine time‐to‐digital converter (TDC) with embedded phase generator. A low‐power current‐starved inverter is employed as the delay unit of the fine TDC to acquire the high measurement resolution. A calibration method to diminish the inherent delay is used to reduce the quantization error of the recovery clock. The proposed CDR is fabricated in a 65‐nm CMOS process. Experiment results show that the CDR operates from 0.9 to 1.1 Gbps and have a 13‐bit consecutive identical digits (CIDs) tolerance.  相似文献   

13.
This paper gives a detail presentation of a fully pseudo‐differential open‐loop BiCMOS track‐and‐hold amplifier (THA) for 9‐b operation up to 1 GSample/s. The proposed THA not only uses a double sampling technique to increase the achievable sampling frequency by a factor of two, but also employs a linearization technique to reduce the gain dependence of the THA input stage upon the input level. Moreover, timing mismatch between the clock signals of the two interleaved paths is minimized by means of a timing mismatch insensitive clock generator controlled by a common master sampling clock. The post‐layout simulation results using TSMC 75 GHz fT, 0.35‐µm SiGe BiCMOS technology show that the proposed architecture achieve a signal to noise and distortion ratio of 53.92 dB, equivalent to the effective number of bits of 8.66‐b for 58.11 MHz input frequency at 1 GSample/s. The power dissipation of the whole THA is 161.1 mW. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A linear, Ultra Wideband, low‐power VCO, suitable for UWB‐FM applications is proposed, forming the main part of a UWB‐FM transmitter. The VCO is designed in TSMC 90thinspacenm digital CMOS process and includes a Source‐Coupled Multivibrator, used as current‐controlled oscillator (CCO) which generates output frequencies between 2.1 and 5 GHz and a voltage‐to‐current (V‐to‐I) converter which translates the VCO input voltage modulation signal to current. Two single‐ended inverter buffers are employed to drive either a differential or a single‐ended UWB antenna. The presented VCO is designed for 1 V power supply and exhibits a linear tuning range of 2.1–5 GHz, a differential output power of ?7.83 dBm±0.78 dB and low power consumption of 8.26 mW, including the output buffers, at the maximum oscillation frequency. It is optimized for a very high ratio of tuning range (81.69%) over power consumption equal to 9.95 dB. The desired frequency band of 3.1–5 GHz for UWB‐FM applications is covered for the entire industrial temperature range (?40 to 125°C). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a design of analog delay locked loop is introduced in which new techniques are applied to eventually increase operating frequency range and reduce jitter considerably. In this design, all blocks of a delay locked loop including a voltage controlled delay line, charge pump, and loop filter are accurately designed. A new delay cell is proposed with wide delay range, in which increase of delay range results in using fewer cells, and consequently the power consumption will decrease. Current mirror techniques and feedback in the proposed charge pump also cause higher current matching and better jitter performance. This delay locked loop, which is designed with TSMC 0.18‐μm CMOS technology, has a wide frequency range from 217 to 800 MHz. It consumes maximum 3.4‐mW and minimum 2.6‐mW power dissipation in source voltage of 1.8 V, which is suitable for low power applications. It also has an appropriate lock time that is at least equal to 3 clock cycles at 217 MHz and at most 25 clock cycles at 800 MHz. Jitter performance in this delay locked loop is improved significantly: RMS jitter is 0.65 ps at 800 MHz and 2.54 ps at 217 MHz. Moreover, its maximum peak‐to‐peak jitter is equal to 5.17 ps, and its minimum peak‐to‐peak jitter is equal to 1.39 ps at 217 and 800 MHz, respectively.  相似文献   

16.
This paper presents an integrated wideband radio frequency front end with improved blocker resilience achieved through selective voltage attenuation at both input and output nodes of the low noise amplifier (LNA). The architecture differs from traditional LNA architectures where blockers are only attenuated at LNA output node. The proposed dual attenuation is attained by designing a low intrinsic input impedance common‐gate common‐source LNA with capacitive feedback, together with an N‐path filtering load. The capacitive feedback across the LNA ensures that the selective N‐path filtering profile at the LNA output is transferred to the LNA input nodes creating a selective input impedance. Consequently, the achieved front‐end input impedance is low at blocker frequencies and matched to the source impedance at the desired frequencies, creating the desired voltage attenuation for blockers. Further, a detailed theoretical analysis of proposed architecture is presented, which leads to clear design guidelines. Evaluated in a 28‐nm fully depleted silicon‐on‐insulator complementary metal oxide semiconductor (CMOS) process, front end is designed for wideband operation from 0.7 to 2.7 GHz. It consumes 11‐mA current from a 1‐V supply (excluding local oscillator (LO) buffering) and possesses a maximum noise figure of 5.1 dB. The front end demonstrates an out‐of‐band blocker compression point of ?1.5 dBm and out‐of‐band IIP3 of +14 dBm at a 100‐MHz offset from LO frequency. In comparison with a traditional common‐gate common‐source LNA‐based front end with wideband input impedance matching, the proposed front end achieves 3.5‐dB improvement in the blocker compression point at a 100‐MHz offset from LO.  相似文献   

17.
A novel digital envelope modulator for envelope tracking radio frequency power amplifier is presented in this paper. The proposed modulator consists of a parallel combination of linear class AB and switching class D power amplifiers that are controlled digitally. In the previous analog architectures, the requirements needed for the AB operational amplifier such as high‐current driving capability, high bandwidth and large output swing is usually obtainable at high overall static power dissipation. The digitally controlled power opamp presented here not only provides the aforementioned requirements but also reduces power dissipation compared with previous work. Furthermore, the digital control of the modulator makes it adaptive to the input signal variations in comparison with conventional analog parallel hybrid envelope modulators. The digital processor of the modulator is evaluated with a 45‐nm complementary metal oxide semiconductor technology. The overall power consumption of the digital processor is around 142 mW at 1.5‐GHz clock frequency. As an application, the designed digital class AB is incorporated in a complete envelope modulator architecture. The overall efficiency of the modulator, including the digital processor power consumption, is around 82% at an average 32 dBm output power for a 5‐MHz input signal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This letter presents a method for improving the transient response of DC‐DC converters. The proposed technique replaces the conventional error amplifier with a combination of two different amplifiers to achieve a high loop gain and high slew rate. In addition, a rapid output‐voltage control circuit is employed to further reduce the recovery time. The proposed technique was applied to a four‐phase buck converter, and the chip was implemented using a 0.18‐μm CMOS process. The switching frequency of each phase was set at 2 MHz. Using a supply voltage of 2.7–5.5 V and an output voltage of 0.6–1.5 V, the regulator provided up to 2‐A load current with maximum measured recovery time of only 6.2 and 6.5 μs for increasing and decreasing load current, respectively. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
A new fast low‐power single‐clock‐cycle binary comparator is presented. High speed is assured by using parallel‐prefix architecture, whereas low power is guaranteed by reducing the switching activities of the internal nodes. When implemented with the ST 90 nm 1 V CMOS technology, the proposed circuit exhibits a 4.5 GHz maximum running frequency and 0.77µW/ MHz energy dissipation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A very low complexity impulse radio‐ultrawideband (IR‐UWB) transmitter suitable for balanced antenna is presented. This all‐digital transmitter employs the binary phase‐shift keying (BPSK) modulation scheme and eliminates the need for a balun. Also, a new Gaussian monocycle pulse generator is proposed which is used as impulse transmitted signal. The transmitter circuit was designed in 0.18‐μm complementary metal–oxide–semiconductor technology. The post‐simulation results show that the core chip size was only 0.02 mm2. The output amplitude pulse yielded 150 mV peak‐to‐peak under a supply voltage of 1.8 V. Simulation results show that the transmitter consumes 8.5 pJ/pulse for 200‐MHz pulse repeating frequency. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号