首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new operational amplifier is presented based on the conventional telescopic amplifier structure. A novel method is used to increase the DC gain of the telescopic amplifier. This method does not degrade the output swing, bandwidth, settling time and the phase margin of the telescopic amplifier. Proposed structure has been simulated by HSPICE software using level 49 parameters (BSIM3v3) in a typical 0.18 µm Complementary metal‐oxide‐semiconductor (CMOS) technology. HSPICE simulation confirms the theoretical estimated improvements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A new solution for an ultra low voltage bulk‐driven programmable gain amplifier (PGA) is described in the paper. While implemented in a standard n‐well 0.18‐µm complementary metal–oxide–semiconductor (CMOS) process, the circuit operates from 0.3 V supply, and its voltage gain can be regulated from 0 to 18 dB with 6‐dB steps. At minimum gain, the PGA offers nearly rail‐to‐rail input/output swing and the input referred thermal noise of 2.37 μV/Hz1/2, which results in a 63‐dB dynamic range (DR). Besides, the total power consumption is 96 nW, the signal bandwidth is 2.95 kHz at 5‐pF load capacitance and the third‐order input intercept point (IIP3) is 1.62 V. The circuit performance was simulated with LTspice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A novel CMOS current‐feedback operational amplifier (CFOA) aimed to low‐power applications is proposed. The use of a compact class AB implementation allows high current‐drive capability and simultaneously very low quiescent power consumption. Measurement results of a fabricated prototype show for an inverting configuration a closed‐loop bandwidth of 1 MHz independent of gain setting, and a slew rate of 2V/µs for a load capacitance of 30 pF and a quiescent power consumption of 264µW. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A new 0.5‐V fully differential amplifier is proposed in this article. The structure incorporates a differential bulk‐driven voltage follower with conventional gate‐driven amplification stages. The bulk‐driven voltage follower presents differential gain equal to unity while suppressing the input common‐mode voltage. The amplifier operates at a supply voltage of less than 0.5 V, performing input transconductance almost equal to a gate transconductance and relatively high voltage gain without the need for gain boosting. The circuit was designed and simulated using a standard 0.18‐µm CMOS n‐well process. The low‐frequency gain of the amplifier was 56 dB, the unity gain bandwidth was approximately 3.2 MHz, the spot noise was 100 nV/√Hz at 100 kHz and the current consumption was 90 μΑ. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the problem of adaptive output‐feedback neural network (NN) control for a class of switched pure‐feedback uncertain nonlinear systems. A switched observer is first constructed to estimate the unmeasurable states. Next, with the help of an NN to approximate the unknown nonlinear terms, a switched small‐gain technique‐based adaptive output‐feedback NN control scheme is developed by exploiting the backstepping recursive design scheme, input‐to‐state stability analysis, the common Lyapunov function method, and the average dwell time (ADT) method. In the recursive design, the difficulty of constructing an overall Lyapunov function for the switched closed‐loop system is dealt with by decomposing the switched closed‐loop system into two interconnected switched systems and constructing two Lyapunov functions for two interconnected switched systems, respectively. The proposed controllers for individual subsystems guarantee that all signals in the closed‐loop system are semiglobally, uniformly, and ultimately bounded under a class of switching signals with ADT, and finally, two examples illustrate the effectiveness of theoretical results, which include a switched RLC circuit system.  相似文献   

6.
This paper presents a new feedback model that focuses on the synthesis rather than the analysis of feedback amplifiers. First, a single‐loop synthesis‐oriented feedback model is developed that enables the full synthesis of such amplifiers in a hierarchical and systematic way. This model is subsequently extended to a double‐loop synthesis model, so that also feedback amplifiers with a characteristic input or output impedance—employing two feedback loops—can be synthesized through the same systematic approach. That these new models are suitable for synthesis lies in the fact that they map directly to the circuit level, such that the intended, asymptotic behavior as well as the various individual contributors to the deviation from this intended behavior, like finite loop gain, non‐ideal input and output impedances of the forward gain block, direct feed‐through and attenuations outside the feedback loop(s), are clearly distinguished and can be assigned to the responsible sections of the network. For this purpose, the double‐loop synthesis model makes the transfers of the two feedback networks explicitly visible, so that it gives immediate insight in how to design these networks to get the required signal transfer and characteristic impedance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a new method to improve the GBW (gain‐bandwidth product) on negative feedback amplifiers. The proposed method is based on the introduction of time‐delay elements in the feedback loop, which can be exploited to retrieve significant bandwidth enhancements. This delayed feedback concept is analyzed, and considerations are presented for first‐order amplifiers, based on theoretical analysis. The concept is simulated and further demonstrated in a practical example using a series‐shunt feedback amplifier with a TL081 operational amplifier (OA) and a 36‐m‐long coaxial cable as a delay element. Measured experimental results show a maximum bandwidth improvement of almost 90%, from a theoretical maximum of 141%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we present an analytical approach to study the harmonic distortion in the frequency domain of operational amplifiers (opamps) embedded in a nonlinear feedback network. The analysis is based on a frequency‐domain block scheme that models the opamp with one block and the feedback network with two blocks, but it is demonstrated that only one feedback block needs to be characterized for the two basic inverting and non‐inverting configurations. The obtained closed‐form expressions extend our understanding of nonlinear frequency behaviour in feedback opamp circuits. Indeed, they give the contribution of each network component to the output distortion. As an instructive example, we analysed second‐ and third‐order harmonic distortion of an active‐RC inverting lossy integrator having all the components nonlinear. The accuracy of the proposed method is confirmed by comparison with computer simulations at transistor level. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a 60‐GHz power amplifier with on‐chip varactor‐based tunable load‐matching networks and an embedded DC temperature‐sensor‐based power detector. The output power can be monitored by the DC temperature sensor, and load‐matching network can be tuned by regulating the control voltage of the varactors, which can be used for correcting unpredictable process, supply voltage, and temperature (PVT) variations and load mismatch. Measured results show that the small‐signal gain of the CMOS power amplifier is up to 6.5 dB at 52 GHz. The power amplifier achieves 5 dBm output P1dB and 7 dBm saturated output power with 4.5% maximun power added efficiency (PAE) at 1 V control voltage. By sweeping the control voltage of the varactors, the power amplifier can obtain the maximun power gain, which can be used to solve the load mismatch. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
We present the design of a low‐power high open‐loop gain opamp for use in chopper‐stabilized capacitively coupled instrumentation amplifiers (CCIAs). The opamp utilizes the current‐reuse folded‐cascode topology and a low‐power gain‐boosting technique to maximize its power efficiency and open‐loop gain. The proposed technique is applied to the designs of two CCIAs: the conservative CCIA with a moderate current scaling ratio and the stringent CCIA with a very high current scaling ratio. Utilizing the current scaling ratio of 4:1, the conservative CCIA, designed and fabricated in a 0.18 μ m CMOS process, consumes a total current of 1.69 μ A from a 0.8‐V supply voltage and achieves a thermal noise floor of 56.5 nV/ . Utilizing the current scaling ratio of 38:1, the stringent CCIA, designed and simulated in a 0.13 μ m CMOS process, consumes a total current of 1.4 μ A and achieves a thermal noise floor of 48 nV/ . The proposed design technique should benefit the designs of low‐power instrumentation amplifiers in advanced processes in which channel‐length modulation and the limited current consumption and supply voltage make the designs of high open‐loop gain opamps difficult. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
A CMOS amplifier employing the frequency selective feedback technique using a shunt feedback capacitor is designed and measured. The proposed amplifier can achieve a high IIP3 (input referred third‐order intercept point) by reducing the third‐ and second‐order nonlinearity contributions to the IMD3 (third‐order intermodulation distortion), which is accomplished using a capacitor as the frequency selective element. Also, the shunt feedback capacitor improves the noise performance of the amplifier. By applying the technique to a cascode LNA using 0.18‐µm CMOS technology, we obtain the NF of 0.7 dB, an IIP3 of +8.2 dBm, and a gain of 15.1 dB at 14.4 mW of power consumption at 900 MHz. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a 67GHz LC oscillator exploiting a three‐spiral transformer and implemented in 65nm bulk complementary metal–oxide–semiconductor technology by STMicroelectronics. The three‐spiral transformer allows operating with a lower voltage supply, still obtaining good phase noise performance, and achieving a compact design. Measured performances when supplied with 1.2 V are: oscillation frequency of 67 GHz, phase noise (PN) equal to ?96 dBc/Hz at 1 MHz frequency offset from the carrier, power consumption (PC) equal to 19.2 mW and figure of merit (FOM) equal to ?179.7 dB/Hz. Measured performances when supplied with 0.6 V are: oscillation frequency of 67 GHz; PN equal to ?88.7 dBc/Hz at a 1 MHz frequency offset from the carrier; PC equal to 3.6 mW and FOM equal to ?179.7 dB/Hz. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Sensitivity and electro‐static discharges (ESD) protection level are crucial parameters for any Ultra High‐Frequency (UHF) power rectifier–harvester designed for radio‐frequency identification (RFID) devices. While sensitivity limits the reading range of the interrogator‐to‐tag communication link, the requirement for an adequate protection against ESD is enforced in commercial devices connected to a printed antenna. Both resistive and capacitive parasitics of the protection circuits severely affect RF performance of the device. In the paper, a rectifier for UHF RFID embedding an ESD protection for 2 kV human‐body discharge model (HBM) level is proposed. The target of a low added parasitic capacitance is achieved by adapting the protection circuit to the RFID rectifier and reusing the ESD clamp for additional functions being mandatory in a UHF RFID front end. The layout of the ESD clamp has been optimized for minimum parasitic resistance without sacrificing the protection level. Two UHF harvesters were implemented in a 180 nm digital complementary metal‐oxide semiconductor (CMOS) technology, featuring a minimum sensitivity of ?15.5 dBm with an ESD protection level of 2 kV HBM. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A multi‐pole gain‐bandwidth theorem sets an upper bound to the bandwidth that can be achieved with specified DC gain and external load capacitance, for a given selection of transistors and operating points. A product of the poles and zeros is constrained by ∏(gm/C) evaluated over the forward‐path active devices. Most practical compensation techniques degrade the actual bandwidth, by factors which the paper explores in detail; depending on the circuit topology, some compensating capacitors can add to the intrinsic device capacitances. A few techniques achieve the ideal. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A simple realization of a 0.5 V bulk‐driven voltage follower/direct current (DC) level shifter designed in a 0.18 µm CMOS technology is presented in the paper. The circuit is characterized by large input and output voltage swings and a DC voltage gain close to unity. The DC voltage shift between input and output terminals can be regulated in a certain interval around zero, by means of biasing current sinks. An application of the proposed voltage follower circuit for realization of a low‐voltage class AB output stage has also been described in the paper. Finally, the operational amplifier exploiting the proposed output stage has been presented and evaluated in detail. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a two‐dimensional (2D) analytical sub‐threshold model for a novel sub‐50 nm multi‐layered‐gate electrode workfunction engineered recessed channel (MLGEWE‐RC) MOSFET is presented and investigated using ATLAS device simulator to counteract the large gate leakage current and increased standby power consumption that arise due to continued scaling of SiO2‐based gate dielectrics. The model includes the evaluation of surface potential, electric field along the channel, threshold voltage, drain‐induced barrier lowering, sub‐threshold drain current and sub‐threshold swing. Results reveal that MLGEWE‐RC MOSFET design exhibits significant enhancement in terms of improved hot carrier effect immunity, carrier transport efficiency and reduced short channel effects proving its efficacy for high‐speed integration circuits and analog design. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In order to deal with the overestimation of matched uncertainty and improve the convergence of sliding variable in sliding mode control, a modified structure of super‐twisting algorithm (STA) with inner feedback and adaptive gain schedule is presented in this paper. The foremost characteristic of the modified STA is that an inner feedback mechanism is built in the standard STA so as to regulate the dynamic behavior of sliding variable effectively. The damping effect produced by the inner feedback can restrain the overshoot and enhance the performance of faster convergence of the sliding variable. Furthermore, the adaptive gain schedule can effectively decrease the chattering amplitude without knowing the upper bound of uncertainty. The numerical simulations and experiments on DC servo system with low speed are carried out to validate the effectiveness and performance advantages of the proposed methodology. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a new multi loop sigma‐delta (ΣΔ) modulator is proposed which employs one order redundant noise shaping in the first stage so the effect of the quantization noise leakage is minimized. Thus, analog circuit requirements are considerably relaxed compared to the conventional Multi‐stAge‐noise‐SHaping (MASH) structures. This enhancement makes the structure appropriate for low voltage and broadband applications. The proposed architecture is compared with traditional high‐order structures, and the advantages are demonstrated by both the analysis and behavioral system level simulations. As a prototype, the proposed MASH 3–2 sigma‐delta modulator is designed, and the detailed design procedure is presented from the system level to the circuit level in a 90 nm CMOS technology. Circuit level simulation results show that the modulator achieves a peak signal‐to‐noise and distortion ratio of 79.4 dB and 79 dB dynamic range over a 10 MHz bandwidth with a sampling frequency of 160 MHz. It consumes 35.4 mW power from a single 1 V supply. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we propose a new approach for the robust design of complementary metal‐oxide‐semiconductor amplifiers based on settling‐time specifications. The approach is based on the definition of the separation factors and on the analysis of their role in the settling time. We define a design strategy for being certain that an OTA satisfies the settling‐time constraint under any statistical variation of process or design parameters. The proposed strategy is applied to the transistor level design of a two‐stage amplifier and a three‐stage one. Simulation results, in good agreement with theory, confirm the validity of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, two new techniques are proposed to improve the second‐order input intercept point (IIP2) and conversion‐gain in double‐balanced Gilbert‐cell complementary metal‐oxide semiconductor (CMOS) mixers. The proposed IIP2 improvement technique is based on canceling the common‐mode second‐order intermodulation (IM2) component at the output current of the transconductance stage. Additionally, the conversion‐gain is improved by increasing the fundamental component of the transconductance stage output current and creating a negative capacitance to cancel the parasitic capacitors. Moreover, in the proposed IM2 cancelation technique, by decreasing the bias current of the switching transistors, the flicker noise of the mixer is reduced. The proposed mixer has been designed with input frequency and output bandwidth equal to 2.4 GHz and 20 MHz, respectively. Spectre‐RF simulation results show that the proposed techniques simultaneously improve IIP2 and conversion‐gain by approximately 23.2 and 5.7 dB, respectively, in comparison with the conventional mixer with the same power consumption. Also, the noise figure (NF) at 20 kHz, where the flicker noise is dominant, is reduced by 4.9 dB. The average NF is increased nearly 0.9 dB, and the value of third‐order input intercept point (IIP3) is decreased approximately 1.8 dB. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号