首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous studies showed variable success of angiotensin II (ANG II) antagonists to oppose systemic and renal vasoconstriction during long-term nitric oxide synthase (NOS) inhibition. We explored in short-term experiments whether the systemic and renal vasodilatory response to angiotensin II type 1 (AT1)-receptor blockade depends on the extent of NOS blockade. In the first series of experiments, anesthetized rats underwent clearance studies during continuous monitoring of mean arterial pressure (MAP), renal blood flow (RBF, flow probe), and renal vascular resistance (RVR). Compared with control animals, low-dose infusion of the NOS-inhibitor nitro-L-arginine (NLA) increased MAP and RVR, decreased glomerular filtration rate, RBF, and sodium excretion, and had no effect on plasma and kidney ANG II content. High-dose NLA induced stronger effects, did not affect plasma ANG II, and reduced kidney ANG II to approximately 60%. In the second series of experiments, we studied the effect of low- and high-dose NLA on autoregulation of RBF. NLA induced a dose-dependent increase in MAP and decrease in RBF but left autoregulation intact. The AT1-receptor antagonist losartan restored MAP and RBF during low-dose NLA but had no depressor or renal vasodilating effect during high-dose NLA. In summary, short-term NOS blockade causes a dose-dependent pressor and renal vasoconstrictor response, without affecting renal autoregulation, and AT1-receptor blockade restores systemic pressor and renal vasoconstrictive effects of mild NOS inhibition but fails to exert vasorelaxation during strong NOS blockade. Both levels of NOS inhibition did not importantly alter intrarenal ANG II levels. Apparently the functional role of endogenous ANG II as determinant of vascular tone is diminished during strong NOS inhibition.  相似文献   

2.
The membrane-permeant gas NO is a putative intercellular messenger that has been proposed on the basis of previous in vitro studies to be involved in synaptic plasticity, especially the induction of long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus and cortex. In the present study, the role of NO in synaptic plasticity has been investigated in vivo. In particular, the action of the novel and selective neuronal NO synthase (nNOS) inhibitor 7-nitro-indazole (7-NI) has been investigated on the induction of LTP and depotentiation (DP) of field EPSPs in CA1 of the hippocampus in vivo. Unlike previously studied nonselective NOS inhibitors, 7-NI does not increase arterial blood pressure. In vehicle-injected rats, high-frequency stimulation consisting of a series of trains at 200 Hz induced LTP. However, LTP induction was strongly inhibited in 7-NI (30 mg/kg, i.p.)-treated animals. The inhibitory effect of 7-NI on the induction of LTP was prevented by pretreatment with L-arginine, the substrate amino acid used by NOS. In control animals, low-frequency stimulation consisting of 900 stimuli at 10 Hz induced DP of previously established LTP, whereas in 7-HI-treated animals only a short-term depression was induced. This effect of 7-NI also was prevented by D-arginine. The LTP and DP induced in control animals in this study were NMDA receptor-dependent, the NMDA receptor antagonist 3-(R,S)-2-carboxypiperazin-4-yl-propyl-1- phosphonic acid inhibiting the induction of both forms of synaptic plasticity. The present experiments are the first to demonstrate that an NOS inhibitor blocks the induction of the synaptic component of LTP and DP in vivo and, therefore, these results strengthen evidence that the production of NO is necessary for the induction of LTP and DP.  相似文献   

3.
Experimental traumatic brain injury (TBI) damages cerebral vascular endothelium and reduces cerebral blood flow (CBF). The nitric oxide synthase (NOS) substrate, L-arginine, prevents CBF reductions after TBI, but the mechanism is not known. This study examined the possibility that post-traumatic hypoperfusion is due to reductions in the substrate sensitivity of NOS which are overcome by L-arginine. Isoflurane-anesthetized rats were prepared for TBI (midline fluid-percussion, 2.2 atm), sham-TBI, or no surgery (control), and were decapitated 30 min after injury or sham injury. The brains were removed and homogenized or minced for measurements of crude soluble or cell-dependent stimulated NOS activity, respectively. Baseline arterial oxygen, carbon dioxide, pH, or hemoglobin levels did not differ among control, sham, or TBI groups. Total cortical soluble NOS activity in TBI-treated rats was not significantly different from either untreated or sham groups when 0.45 microM or 1.5 microM L-arginine was added. Also, there were no differences in cell-dependent NOS activity among the three groups stimulated by 300 microM N-methyl-D-aspartate, 50 mM K+, or 10 microM ionomycin. These data suggest that TBI reduces CBF by a mechanism other than altering the substrate specificity or activation of nNOS.  相似文献   

4.
1. This study investigated the effects of low dose endotoxin (lipopolysaccharide, LPS) on (i) systemic haemodynamics, (ii) renal blood flow (RBF), (iii) renal cortical and medullary perfusion and (iv) renal function in the anaesthetized rat. We have also investigated the effects of nitric oxide (NO) synthase (NOS) inhibition with NG-methyl-L-arginine (L-NMMA) on the alterations in systemic and renal haemodynamics and renal function caused by endotoxin. 2. Infusion of low dose LPS (1 mg kg-1 over 30 min, n = 6) caused a late fall in mean arterial blood pressure (MAP, at 5 and 6 h after LPS), but did not cause an early (at 1-4 h after LPS) hypotension. The pressor effect of noradrenaline (NA, 1 microgram kg-1, i.v.) was significantly reduced at 1 to 6 h after LPS (vascular hyporeactivity). Infusion of L-NMMA (50 micrograms kg-1 min-1 commencing 60 min before LPS and continued throughout the experiment, n = 7) abolished the delayed hypotension and significantly attenuated the vascular hyporeactivity to NA (at 2-6 h). 3. Infusion of LPS (1 mg kg-1 over 30 min, n = 6) caused a rapid (within 2 h) decline in renal function (measured by inulin clearance) in the absence of a significant fall in MAP or renal blood flow (RBF). L-NMMA (n = 7) attenuated the impairment in renal function caused by LPS so that the inulin clearance in LPS-rats treated with L-NMMA was significantly greater than in LPS-rats treated with vehicle (control) at 3-6 h after infusion of LPS. 4. Endotoxaemia also caused a significant reduction in renal cortical, but not medullary perfusion (measured as Laser Doppler flux). Infusion of L-NMMA caused a significant further fall in cortical perfusion and a significant fall in medullary perfusion in the absence of changes in RBF. 5. Infusion of LPS resulted in a progressive increase in the plasma levels of nitrite/nitrate (an indicator of the formation of NO), so that the plasma concentration of nitrite/nitrate was significantly higher than baseline at 150 to 330 min after LPS. Infusion of L-NMMA attenuated the rise in the plasma concentration of nitrite/nitrate (at 270 and 330 min, P < 0.05) caused by LPS. 6. Thus, the renal dysfunction caused by injection of low dose of endotoxin in the rat occurs in the absence of significant falls in blood pressure or total renal blood flow. Inhibition of NOS activity with L-NMMA attenuates the renal dysfunction caused by endotoxin (without improving intrarenal haemodynamics), suggesting that an overproduction of NO may contribute to the development of renal injury and dysfunction by causing direct cytotoxic effects.  相似文献   

5.
Stimulation of NMDA receptor increases NO-dependent cGMP synthesis. A significantly higher cGMP level was observed in hippocampus (about 8-fold increase) than in cerebral cortex (2.5-fold increase), as compared to basal value. The activity of NO synthase (NOS) and the basal level of cGMP in unstimulated slices were only slightly higher in hippocampus than in the cortex. About 60% of NOS total activity was found in the brain membrane fraction. The enzyme activity was not affected by glucocorticoids, even after 20 days of hydrocortisone treatment in dose of 40 mg/kg b.w. Brain ischemia induced by ligation of the both common carotid arteries in gerbils (Meriones unquiculatus) significantly increased NOS activity as well as cGMP and putrescine concentrations but decreased mono-ADP-ribosolation of proteins. Changes of NOS activity and cGMP concentration evoked by ischemia were decreased by specific inhibitor of the neuronal form of NOS (nNOS), 7-nitrodazole and the inhibitor of guanylate cyclase, LY 83,583 administered respectively in a dose of 25 mg/kg b.w. and 6 mg/kg b.w. 5 min. before ischemia. The inhibitor of nNOS, 7NI, did not change the concentration of putrescine during ischemia and reperfusion. Our results indicated that these inhibitors could protect the brain against excessive production of nitric oxide and biochemical processes dependent on it. In this way they may offer a new strategy in the therapy of brain ischemia.  相似文献   

6.
This prospective clinical study compared the physiological effects of two commonly used anaesthetic induction techniques in horses maintained with halothane. One hundred horses admitted for elective surgery were randomly allocated to receive either guaiphenesin (to effect) and thiopentone (5 mg/kg), or detomidine (20 microg/kg) and ketamine (2 mg/kg) for the induction of anaesthesia after acepromazine premedication. Anaesthesia was maintained with halothane in oxygen. There were no significant differences in breed, age, sex, weight, type of surgery and duration of anaesthesia between the groups. Immediately after induction of anaesthesia heart rate was higher after guaiphenesin and thiopentone, and arterial blood pressure was higher after detomidine and ketamine. Thereafter hypotension, often necessitating an infusion of dobutamine, developed in both groups. Arterial blood gases and respiratory rates were similar in the two groups. There were no significant differences between the groups in the subjectively scored quality of induction and recovery, or in recovery time.  相似文献   

7.
The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-iu m-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

8.
OBJECTIVES: This report describes successful anaesthesia and electroconvulsive therapy (ECT) in a patient with an unruptured basilar artery aneurysm. ECT is associated with a hyperdynamic state characterised by arterial hypertension, tachycardia, and considerably increased cerebral blood flow rate and velocity. These responses pose an increased risk for subarachnoid haemorrhage when an intracranial aneurysm coexists. METHODS: A 54 year old woman presented for ECT. She had a 20 year history of major depression which was unresponsive to three different antidepressant drugs. There was also an unruptured 5 mm saccular aneurysm at the basilar tip, which had been documented by cerebral angiography, but its size had remained unchanged for the previous four years. After she declined surgical intervention, she gave informed consent for ECT. During a series of seven ECT sessions middle cerebral artery flow velocity was recorded by a pulsed transcranial Doppler ultrasonography system. She was pretreated with 50 mg oral atenolol daily, continuing up to the day of the last ECT and immediately before each treatment, sodium nitroprusside was infused at a rate of 30 microg/min, to reduce systolic arterial pressure to 90-95 mm Hg. RESULTS: Systolic flow velocity during the awake state ranged from 62-75 cm/s, remaining initially unchanged with sodium nitroprusside infusion. After induction of anaesthesia (0.5 mg/kg methohexitone and 0.9 mg/kg succinylcholine), flow velocities decreased to 39-54 cm/s, reaching maximal values of 90 cm/s (only 20% above baseline) after ECT. These flow velocities recorded post-ECT were considerably below the more than twofold increase recorded when no attenuating drugs were used. Systolic arterial blood pressure reached maximal values of 110-140 mm Hg and heart rate did not exceed 66 bpm. Rapid awakening followed each treatment, no focal or global neurological signs were apparent, and the patient was discharged in remission. CONCLUSION: In a patient with major depression and a coexisting intracerebral saccular aneurysm who was treated with ECT, the combination of beta blockade with atenolol and intravenous infusion of sodium nitroprusside prevented tachycardia and hypertension, and greatly attenuated the expected increase in flow velocity in the middle cerebral artery.  相似文献   

9.
The effect of intravenous dipyridamole (0.7 mg/kg) on cerebral blood flow (CBF), mean arterial blood pressure (MABP), heart rate, respiration rate, cerebral electrical activity, arterial blood gases, pH, and glucose was investigated in 14 normotensive and 14 stroke-prone spontaneously hypertensive anesthetized rabbits. CBF was measured by hydrogen and heat clearance. In both groups, MABP decreased (normotensive: -24 mm Hg, hypertensive: -47 mm Hg; ANOVA: P < 0.0001) and CBF increased (normotensive: +59 ml/100 g/min, hypertensive: +72 ml/100 g/min; ANOVA: P < 0.0002). CBF returned to the initial level 21 min later in hypertensive than in normotensive rabbits. Changes in other parameters were insignificant. In additional experiments, 30 mg/kg theophylline entirely prevented the cerebral vasodilator and systemic hypotensive effects of dipyridamole in both normotensive and hypertensive rabbits. We conclude that, in stroke-prone spontaneously hypertensive rabbits, the longer-lasting and larger CBF increase in response to dipyridamole may be attributed to reversible functional changes in the cerebral vasculature resulting from hypertension.  相似文献   

10.
Effects of prolonged sevoflurane, isoflurane and halothane anaesthesia in oxygen on clinical, cardiopulmonary, haematologic, and serum biochemical findings were compared in healthy, premedicated cats breathing spontaneously during 6 h of anaesthesia using rebreathing (semi-closed circuit) or non-rebreathing (Bain coaxial circuit) system. Recovery from anaesthesia with sevoflurane was more rapid than that with halothane or isoflurane in both systems. Respiration and heart rates during sevoflurane anaesthesia were similar to those during isoflurane rather than halothane anaesthesia in both systems. The degree of respiratory acidosis during prolonged sevoflurane anaesthesia was similar to that during isoflurane anaesthesia, and was less than that during halothane anaesthesia in both rebreathing and non-rebreathing systems. Prolonged sevoflurane anaesthesia induced mean arterial pressure similar to isoflurane or halothane anaesthesia in the non-rebreathing system, but it depressed mean arterial pressure less than isoflurane or halothane anaesthesia in the rebreathing system. Time related increase in the arterial carbon dioxide partial pressure was observed during halothane anaesthesia especially in the rebreathing system, however, no significant time-related changes in cardiopulmonary variables were observed during either sevoflurane or isoflurane anaesthesia in both systems. There were no significant differences among sevoflurane, isoflurane and halothane anaesthesia in serum biochemical values in both systems.  相似文献   

11.
Nitric Oxide (NO) has been implicated as a mediator of neuronal injury in vascular stroke. On the other hand, NO is suggested to play a neuroprotective role by increasing blood flow during cerebral ischemia. In order to evaluate the role of NO in the spinal cord ischemia, effects of nitric oxide synthase (NOS) inhibition on the recovery of reflex potentials after a transient spinal cord ischemia were examined in urethane-chloralose anesthetized spinal cats. Spinal cord ischemia was produced by occlusion of the thoracic aorta and the both internal mammary arteries for 10 min. Regional blood flow (RBF) in the spinal cord was continuously measured with a laser-Doppler flow meter. The monosynaptic (MSR) and polysynaptic reflex (PSR) potentials elicited by electrical stimulation of the tibial nerve, were recorded from the L7 or S1 ventral root. The recovery process of spinal reflex potentials was reproducible when the oclusion was repeated twice at an interval of 120 min. Pretreatment with N(G)-monomethyl-L-arginine (L-NMMA, 10 mg/kg), a NOS inhibitor significantly accelerated the recovery of PSR potentials after spinal cord ischemia. The accelerating effect of L-NMMA on the recovery of PSR potentials was abolished by co-administration of L-arginine (1 mg/kg/min) but not by that of D-arginine (1 mg/kg/min). L-NMMA failed to improve RBF in the spinal cord during ischemia and reperfusion. Nitroprusside (10 microg/kg/min), a NO donor, retarded the recovery of PSR potentials after spinal cord ischemia. These results suggest that NO production has a significant influence on the functional recovery after transient spinal cord ischemia.  相似文献   

12.
Various factors have been implicated in the pathogenesis of essential hypertension, although the exact cause of essential hypertension is still unknown. In this paper it is suggested that the basic pathology in essential hypertension may be an inherited defect in the blood supply of that part of reticular formation of rostral ventrolateral medulla which contains the pressor area. The posited defect is one in which the arterial branch supplying blood to the above-mentioned pressor area of vasomotor center arises from an artery which is stenosed. The other branches of this stenosed artery supply adjacent areas of medullary reticular formation concerned with other neurological functions. Due to this stenosis there is ischaemia of the pressor area resulting in increased systemic arterial pressure. During stress, the blood requirement of adjacent areas of the reticular formation (whose function is still not clearly defined) may increase, thus further decreasing blood flow to vasopressor area and increasing the cerebral ischaemic response. After a prolonged time, this increased blood pressure can cause hyaline arteriolar nephrosclerosis in kidney, which may participate in the maintenance of elevated systemic arterial pressure.  相似文献   

13.
Ample experimental evidence indicates that acute beta-amyloid infusion into the nucleus basalis of rats elicits abrupt degeneration of the magnocellular cholinergic neurons projecting to the cerebral cortex. In fact, involvement of a permanent Ca2+ overload, partially via N-methyl-D-aspartate (NMDA) receptors, was proposed as a pivotal mechanism in beta-amyloid-induced neurodegeneration. A definite measure of NMDA receptor-mediated processes and subsequent Ca2+ entry is the induction of Ca2+/calmodulin-activated neuronal nitric oxide synthase (nNOS) in nerve cells. In the present account we therefore assessed activation of nNOS in correlation with cholinergic decline after beta-amyloid(1-42) or beta-amyloid(25-35) infusion into the rat nucleus basalis. The results demonstrate the beta-amyloid conformation-dependent enhancement of cortical nitric oxide synthase (NOS) activity. Furthermore, chronic application of the polyamine site NMDA receptor blocker ifenprodil effectively attenuated beta-amyloid neurotoxicity. We propose that nNOS activation reflects the degree of beta-amyloid-induced excitotoxic injury in a proportional manner. Moreover, Ca2+-mediated processes via NMDA receptors, or direct binding of beta-amyloid to this receptor may be a critical step in the neurotoxic mechanisms in vivo.  相似文献   

14.
Recent studies suggest the involvement of the N-methyl-D-aspartate (NMDA) type of glutamate receptors and nitric oxide synthase (NOS) in the process of increased sensitivity to the convulsive effect of cocaine ("cocaine kindling"). The present study was undertaken to analyze the various behavioral stages in the development of cocaine kindling and to investigate the effect of 7-nitroindazole (7-NI), a relatively selective inhibitor of the neuronal NOS isoform, on the induction and expression of sensitization to the convulsive effect of cocaine. Also, the effect of 7-NI on responses produced by acute systemic administration of cocaine or N-methyl-D,L-aspartate (NMDLA) was investigated. Cocaine kindling was assessed on a five-stage scale following the administration of a sub-convulsant dose of the drug (35 mg/kg/day; i.p.) to Swiss Webster mice for 10 days. Stage 5 seizures developed following the 9th day of cocaine administration. Pre-treatment with 7-NI (25 mg/kg/day; i.p.) 15 min before cocaine for 10 days completely prevented the appearance of stage 4 and 5 seizures, and it significantly attenuated stage 3 behavior in response to a challenge cocaine dose (35 mg/kg) given either 24 hr or 10 days after 7-NI/cocaine administration was stopped. A single injection of 7-NI (25 mg/kg; i.p.) completely prevented the expression of cocaine kindled seizures. Whereas 7-NI had no effect on the responses elicited by acute cocaine administration (60 mg/kg; i.p.), this agent partially attenuated the effects induced by systemic administration of the NMDA receptor agonist NMDLA (250 mg/kg; i.p.). The present study indicates that 7-NI attenuates both the induction and expression of sensitization to the convulsive effect of cocaine. The findings that 7-NI attenuated cocaine kindling and partially blocked the effects produced by activation of the NMDA receptor, but not the effects induced by acute cocaine administration, support the role of the NMDA receptor and brain NOS in the development of cocaine kindling rather than in the acute effects of the drug.  相似文献   

15.
OBJECTIVE: To examine the ability of magnesium sulphate to counteract the noradrenaline-induced cerebral vasoconstrictor and pressor responses in goats by using both in vivo and in vitro techniques. DESIGN: Cerebral blood flow was measured in vivo by means of an electromagnetic flow probe around the internal maxillary artery. Isometric tension was recorded in vitro from rings of goat middle cerebral artery maintained in an organ bath. RESULTS: 1. In vivo. Continuous infusion of noradrenaline (10 micrograms/min) directly into the cerebral arterial supply elicited sustained decrease in cerebral blood flow (61% [SEM 3] of control values) and increase in cerebral vascular resistance (178% [SEM 9] of control values). Magnesium sulphate, injected directly into the cerebral arterial supply (10-300 mg) or infused intravenously (0.3 g and 3 g during 15 min) at the noradrenaline-induced steady state, increased cerebral blood flow by decreasing cerebral vascular resistance in a dose-dependent manner. A similar result was obtained when intravenous magnesium sulphate (3 g/15 min) was tested against the cerebral vasoconstrictor and pressor responses induced by intravenous infusion of noradrenaline (30 micrograms/min). 2. In vitro. When compared with the response obtained in a control medium (1 mmol/L Mg2+), 10 mmol/L Mg2+ significantly inhibited the maximum contraction elicited by noradrenaline (10(-8) to 3 x 10(-3) mol/L) from 45% [SEM 4] to 26% [SEM 4]. CONCLUSIONS: Magnesium sulphate reverses the noradrenaline-induced cerebral vasoconstrictor and pressor responses by a direct inhibitory action of Mg2+ on the actions of noradrenaline in the cerebral and peripheral vascular beds, which leads to a decrease in vascular resistance. These results could explain, at least in part, the beneficial effects of magnesium sulphate in the management of preeclampsia and eclampsia.  相似文献   

16.
Autoregulation of blood flow implies reciprocal changes in vessel diameter and red blood cell velocity (VRBC) when perfusion pressure is altered. We tested two hypotheses: 1) blood flow will be autoregulated throughout arteriolar networks during a pressor response, and 2) wall shear rate (WSR; proportional to VRBC/diameter) will increase during autoregulation. Male hamsters (109 +/- 3 g; n = 22) were anesthetized (pentobarbital sodium 60 mg/kg), and the cremaster muscle was prepared for intravital videomicroscopy. Internal diameter and VRBC were monitored in first (1A)- through fourth (4A)-order arterioles; WSR and blood flow were calculated. Data were acquired at rest and at the peak of diameter responses to bilateral carotid artery occlusion (CAO). At rest, 1) mean arterial and 1A transmural pressures were 100 +/- 5 and 59 +/- 4 mmHg, respectively; 2) as branch order increased, arteriolar diameter, VRBC, and blood flow decreased (P < 0.05); and 3) WSR and resting tone increased with branch order (P < 0.05). During pressor responses to CAO, 1) arterial and 1A pressures increased to 145 +/- 7 and 89 +/- 5 mmHg, respectively (P < 0.05); 2) 1A branches dilated while 2A, 3A, and 4A branches constricted (P < 0.05); 3) VRBC and WSR increased in all branches (P<0.05); and 4) blood flow increased in 1A and 2A branches (P < 0.05), yet was unchanged (i.e., was autoregulated) in 3A and 4A branches. Arteriolar constrictions during CAO were not affected by alpha-adrenoceptor blockade with phentolamine (10(-6) M). We conclude that autoregulation of muscle blood flow during a pressor response involves myogenic constriction of arterioles with concomitant elevation of WSR.  相似文献   

17.
The central administration of cholinergic agonists can produce a significant increase in arterial blood pressure by enhancing sympathetic vasomotor tone. The stimulation of spinal muscarinic receptors through intrathecal (i.t.) injection of carbachol in rats evoked a significant pressor response that returned to preinjection levels within 30 to 40 min. We investigated the roles of glutamatergic and GABAergic receptors in mediating the hypertensive response to i.t. injection of the muscarinic receptor agonist carbachol and in the maintenance of resting blood pressure and heart rate. The i.t. pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonists D-AP7 or MK801 maleate (dizocilipine) attenuated the pressor response to i.t. administration carbachol in a dose-dependent manner in conscious, freely moving rats. In contrast, i.t. pretreatment with 6-cyano-7-nitroquinoxaline-2,3-dione, a non-NMDA glutamate receptor antagonist, was not effective in this regard, indicating that the carbachol-evoked pressor response was not mediated through the quisqualate/kainate subtype of glutamate receptors. The i.t. pretreatment with the gamma-aminobutyric acid type B receptor agonist baclofen also inhibited the pressor response to i.t. injection of carbachol at doses that did not alter motor function. To determine whether the pressor response to stimulation of spinal muscarinic receptors required the participation of higher centers, rats received an intracisternal injection of either methylatropine or D-AP7 before the i.t. injection of carbachol. Both intracisternal pretreatments significantly reduced the expression of the pressor response to i.t. injection of carbachol. These findings are consistent with the presence of a powerful modulating spinobulbar muscarinic pressor system. Pharmacological activation of this system involves the participation of spinal and perhaps medullary glutamate-NMDA and gamma-aminobutyric acid type B receptor systems.  相似文献   

18.
The effect of animal cytochrome C (Ca), biotechnological cytochrome (Cb) and its hemtetradecapeptide (HTDP) on cerebral blood flow autoregulation during rapid decrease of systemic arterial pressure (SAP) was studied in acute experiments on rats. Cytochrome C preparations caused no effect on the autoregulatory responses of the cerebral vessels in animals with normal cerebral circulation. Injection of 5 mg/kg Ca and Cb and 0.8 mg/kg HTDP promoted restoration of the phenomenon of cerebral blood flow autoregulation in ischemic brain damage in change of SAP from 120 to 60 mm Hg. Prophylactic injection of 20 mg/kg Ca and Cb and 3.3 mg/kg HTDP prevented cerebral blood flow autoregulation disturbance caused by transitory brain ischemia.  相似文献   

19.
Denervated muscle fibers express enhanced levels of stress and apoptosis-associated proteins and undergo apoptosis. In experimentally denervated and reinnervated rat facial muscle, we now evaluate changes in the expression patterns of different isoforms of nitric oxide synthase (NOS)-generating nitric oxide (NO), which mediates oxidative stress and apoptosis. Physiological expression of NOS corresponds to a constant sarcolemmal staining pattern for neuronal NOS (nNOS) and a patchy sarcolemmal and weak sarcoplasmic labeling for the endothelial NOS-isoform, with no expression for inducible NOS (iNOS). Denervated muscle displayed distinct downregulation of nNOS with preserved expression of dystrophin. Also, denervated and immediately reinnervated muscle fibers showed decreased expression of nNOS. However, muscle fibers reinnervated for 10 weeks revealed a restored physiological expression of nNOS. There were no changes in the expression of endothelial and inducible NOS. As NO is known to induce growth arrest and collapse of neuronal growth cones, downregulation of NOS may contribute to promotion of axonal regeneration by aiding formation of new endplates. NO is upregulated in reinnervated muscle fibers and thus prevents polyneural hyperinnervation by extrajunctional synapses. Furthermore, downregulation of NOS during denervation is compatible with the finding that low levels of NO contribute to apoptosis instead of necrosis in disease states of oxidative stress.  相似文献   

20.
BACKGROUND: The vascular endothelium is anatomically intact but functionally abnormal in preatherosclerotic states, and an early deficit in the bioavailability of nitric oxide (NO) or related molecules has been described in both humans and animal models. We hypothesized that the targeted gene transfer of NO synthase (NOS) isoforms might ameliorate or reverse the deficit. METHODS AND RESULTS: We constructed a recombinant adenovirus, Ad.nNOS, that expresses the neuronal isoform of NOS (nNOS) and used it for in vivo endovascular gene transfer to carotid arteries (CA) from normal and cholesterol-fed rabbits. Vessels were harvested 3 days after gene transfer. In CA from normal rabbits, Ad.nNOS generated high levels of functional nNOS protein predominantly in endothelial cells and increased vascular NOS activity by 3.4-fold relative to sham-infected control CA. Ad.nNOS gene transfer also significantly enhanced endothelium-dependent vascular relaxation to acetylcholine; at 3 micromol/L acetylcholine, Ad.nNOS-treated arteries showed an 86+/-4% reduction in precontracted tension, whereas control CA showed a 47+/-6% reduction in tension. Contraction in response to phenylephrine and relaxation in response to nitroprusside were unaffected in both control and Ad.nNOS-treated CA. To determine the effect of Ad.nNOS in atherosclerotic arteries, 10 male New Zealand White rabbits maintained on a 1% cholesterol diet for 10 to 12 weeks underwent gene transfer according to the same protocol used in normal rabbits. Ad.nNOS-treated arteries showed a 2-fold increase in NADPH-diaphorase staining intensity relative to sham-infected and Ad. betaGal-treated arteries. The CA from cholesterol-fed rabbits showed impaired acetylcholine-induced relaxation, but this abnormality was almost entirely corrected by Ad.nNOS gene transfer. CONCLUSIONS: In vivo adenovirus-mediated endovascular delivery of nNOS markedly enhances vascular NOS activity and can favorably influence endothelial physiology in the intact and atherosclerotic vessel wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号