首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
交通循环荷载下埋地管道性能与防护是当前研究的重点问题,首先针对格栅加筋柔性管道开展试验研究,分析管道埋深H为3D(D为管道外径)时循环荷载水平和频率、首层格栅埋深、长度、层间距和筋材层数对管道力学与变形性能的影响,试验结果表明:首层格栅最佳埋深u为0.4B(B为加载板宽度),最佳层间距ug为0.5B,最佳铺设长度L为5D;增加格栅层数能显著增强土体,从而有效减少管道变形和加载板沉降;提高荷载水平或降低荷载频率使管道变形、加载板沉降和格栅应变整体显著增加;格栅应变随其与加载板中心的距离增加而减小,格栅中心点应变随循环次数增加呈现先增加后减少的趋势。进而,基于有限元数值模拟分析管道埋深H、加载板宽度B和管径D对管道力学性能的影响,数值结果表明增加管道埋深或减小加载板宽度,管道径向变形减小;同等荷载作用下,减小管径时管道径向变形增大,筋材加筋效果减弱,适当增加管道直径,有利于筋材加筋作用的充分发挥,从而减小管道径向变形。  相似文献   

2.
This paper reports full scale experiments, under simulated heavy traffic, of geocell and EPS (expanded polystyrene) geofoam block inclusions to mitigate the pressure on, and deformation of, shallow buried, high density polyethylene (HDPE) flexible pipes while limiting surface settlement of the backfilled trench. Geocell of two pocket sizes and EPS of different widths and thickness are used. Soil surface settlement, pipe deformation and transferred pressure onto the pipe are evaluated under repeated loading. The results show that using EPS may sometimes lead to larger surface settlements but can alleviate pressure onto the pipe and, consequentially, result in lower pipe deformations. This benefit is enhanced by the use of geocell reinforcement, which not only significantly opposes any EPS-induced increase in soil surface settlement, but further reduces the pressure on the pipe and its deformation to within allowable limits. For example, by using EPS geofoam with width 0.3 times, and thickness 1.5 times, pipe diameter simultaneously with geocell reinforcement with a pocket size 110 × 110 mm2 soil surface settlement, pipe deformation and transferred pressure around a shallow pipe were respectively, 0.60, 0.52 and 0.46 times those obtained in the fully unreinforced buried pipe system. This would represent a desirable and allowable arrangement.  相似文献   

3.
 针对土工格栅加筋防护埋地管道开展了静力载荷实验,研究管周填土相对密实度(Dr)、管道埋深(H)、筋材长度(L)和层数(n),以及首层筋材埋深(u)等对埋地管道防护性能的影响。实验结果表明:首层筋材最佳埋深为0.4B(加载板宽),筋材最佳铺设长度为4D(管道外径),筋材层数以3~4层为宜;同等条件下随着Dr持续增加,管道极限承载力增加,加载板沉降相应减少,且二者变化率明显降低,表明管周土相对松散时加筋效果愈加明显;同等条件下管道水平和竖向径向变形均随地表载荷增加而增加,且竖直径向比水平径向变形略大,通过增加筋材层数能显著提高土体刚度,能有效地分散管道上方载荷,为管道提供减载保护;管道外壁监测点环向应变值位于-1.5%~1.0%之间,顶部以压缩变形为主,其两侧45°处为压缩和拉伸变形过渡区,而水平径向以拉伸变形为主;随着Dr增加,管周环向应变减小,且应变的对称性愈加显著,表明因Dr增加引起土体自身刚度增加,能有效地限制管道移动及变形。  相似文献   

4.
土钉加固黏性土坡动力离心模型试验研究   总被引:1,自引:0,他引:1  
 很多滑坡是由地震引发的,为了防止或减轻地震造成的边坡灾害,目前在边坡的加固治理方面已经发展并形成一些较好的方法,而土钉是边坡抗震加固的一种简便有效的方法。采用动力离心模型试验方法,再现地震条件下土钉加固黏性土坡和素土坡的响应;测量了试验过程中边坡的位移场和加速度响应的变化过程。基于试验结果,通过对比素土坡和土钉加固土坡的动力响应,探讨土钉加固土坡的变形规律和加固机制。试验结果表明,地震过程中土坡产生不可恢复的累积变形,其大小与输入的地震加速度峰值有关。通过比较土钉加固土坡和素土坡的位移分布,研究土钉加固土坡的机制。引入土单元应变进行分析,结果表明,土钉加固措施能显著地改变边坡的位移场分布,限制土坡的剪切变形,避免滑裂面的产生,从而提高了边坡的稳定性。  相似文献   

5.
This paper presents results of a comprehensive investigation undertaken to quantify the efficiency of using reinforcement layers in order to enhance the bearing capacity of soils that are characterised by the existence of localised soft pockets. Small-scale model experiments using two dimensional tank were conducted with beds created from well graded sand with mean particle size of 300 μm but prepared with different dry densities. A relatively softer material was embedded at predetermined locations within the sand beds so as to represent localised soft pockets. Various arrangements of soil reinforcement were tested and compared against comparable tests but without reinforcement. In total 42 tests were carried out in order to study the effect of the width and depth of the soft pocket, the depth of one reinforcing layer and the length and number of reinforcing layers on the soil bearing capacity. The results show clearly that the ultimate bearing capacity reduces by up to 70% due to the presence of a soft pocket. It was also noted that the proximity of the soft pocket also influenced the bearing capacity. Reinforcing the soil with a single layer or increasing the length of reinforcement is not as effective as was anticipated based on previous studies. However, bearing capacity increased significantly (up to 4 times) to that of unreinforced sand when four layers of reinforcement were embedded. The results suggest that rupture of the bottom reinforcement layer is imminent in heavily reinforced sand beds overlying soft pockets and therefore its tensile strength is critical for successful reinforcement.  相似文献   

6.
Pavements constructed over loosely compacted subgrades may not possess adequate California bearing ratio(CBR)to meet the requirements of pavement design codes,which may lead to a thicker pavement design for addressing the required strength.Geosynthetics have been proven to be effective for mitigating the adverse mechanical behaviors of weak soils as integrated constituents of base and sub-base layers in road construction.This study investigated the behaviors of unreinforced and reinforced sand with nonwoven geotextile using repeated CBR loading test(followed by unloading and reloading).The depth and number of geotextile reinforcement layers,as well as the compaction ratio of the soil above and below the reinforcement layer(s)and the compaction ratio of the sand bed,were set as variables in this context.Geotextile layers were placed at upper thickness ratios of 0.3,0.6 and 0.9 and the lower thickness ratio of 0.3.The compaction ratios of the upper layer and the sand bed varied between 85% and 97% to simulate a dense layer on a medium dense sand bed for all unreinforced and reinforced testing scenarios.Repeated CBR loading tests were conducted to the target loads of 100 kgf,150 kgf,200 kgf and 400 kgf,respectively(1 kgf = 9.8 N).The results indicated that placing one layer of reinforcement with an upper thickness ratio of 0.3 and compacting the soil above the reinforcement to compaction ratio of 97%significantly reduced the penetration of the CBR piston for all target repeated load levels.However,using two layers of reinforcement sandwiched between two dense soil layers with a compaction ratio of 97%with upper and lower thickness ratios of 0.3 resulted in the lowest penetration.  相似文献   

7.
8.
为了提高桩土荷载分担比,一些建筑工程桩筏基础下的复合地基采用了加筋垫层,然而加筋垫层复合地基的变形协调与荷载传递的影响还缺乏深入研究。采用自制的二维多活动门试验装置与椭圆钢棒相似土填料,开展了无筋褥垫层随桩间土下沉过程的模型试验,获得了不同垫层厚度下无筋垫层的变形与应力协调特性。在模型试验基础上,采用颗粒离散元DEM数值模拟建立了无筋与加筋垫层数值模型,揭示了有、无加筋条件下的褥垫层工作特性区别,并探讨了褥垫层厚度、桩间净距以及加筋位置等对褥垫层工作特性的影响。结果表明:当加筋高度距桩顶超过100 mm时,桩土应力比曲线和褥垫层变形均接近未加筋的情况; 加筋体设置高度小于100 mm时,下方颗粒垫层的变形协调会受到影响,格栅与下部垫层之间产生脱空现象,从而导致桩土应力比随着桩间土下沉量的增加而出现陡升; 陡升段起点对应的桩间土下沉量随着加筋位置的提高而增加,工程中可能会导致复合地基桩体超过承载力而引起复合地基发生破坏。  相似文献   

9.
Worldwide, waste tires are being discarded in landfills at a huge environmental cost, therefore, their use as a three-dimensional reinforcement material is a wise solution to reduce their environmental impact, and fire risk in the case of shredded tires. In this research a series of experimental model tests of embankments reinforced with Geocell and tires were conducted to compare the performance of these types of reinforcement. The models tested had different Geocell embedment depths, number of Geocell layers, vertical spacing between Geocell layers and density or soil stiffness. Testing consisted of applying pressure at the crest of the embankment and monitoring the pressure distribution, as well as the vertical and horizontal deformations inside of the embankment. The results suggested that when compared with unreinforced embankments, reinforced embankments effectively improve the bearing capacity, thereby, reducing vertical and lateral displacements. This study also showed that an optimal embedment depth and spacing between Geocell reinforcement layers can further improve the slope performance. Comparisons between Geocell reinforced embankments and waste tire reinforced embankments, showed that waste tire reinforcement has a superior performance over the Geocell-reinforced embankments. This difference in performance between the two types of reinforcement is more apparent if the embankment backfill has lower stiffness. i.e. lower density.  相似文献   

10.
This paper presents the results from a laboratory modeling tests and numerical studies carried out on circular and square footings assuming the same plan area that rests on geosynthetic reinforced sand bed. The effects of the depth of the first and second layers of reinforcement, number of reinforcement layers on bearing capacity of the footings in central and eccentral loadings are investigated. The results indicated that in unreinforced condition, the ultimate bearing capacity is almost equal for both of the footings; but with reinforcing and increasing the number of reinforcement layers the ultimate bearing capacity of circular footing increased in a higher rate compared to square footing in both central and eccentrial loadings. The beneficial effect of a geosynthetic inclusion is largely dependent on the shape of footings. Also, by increasing the number of reinforcement layers, the tilt of circular footing decreased more than square footing. The SR (settlement reduction) of the reinforced condition shows that settlement at ultimate bearing capacity is heavily dependent on load eccentricity and is not significantly different from that for the unreinforced one. Also, close match between the experimental and numerical load-settlement curves and trend lines shown that the modeling approach utilized in this study can be reasonably adapted for reinforced soil applications.  相似文献   

11.
Model testing for pipe-reinforced tunnel heading in a granular soil   总被引:7,自引:0,他引:7  
One of the most popular pre-reinforcement methods of tunnel heading in granular soils would be the grouting with pipes, which is so-called the umbrella arch method. This technique allows safe excavation even in poor ground conditions by creating longitudinal arching parallel to the tunnel axis. The complexity of boundary conditions of the methods, however, imposes difficulties in representing the tunnelling procedure in laboratory and analytical models. Full-scale study to identify the reinforcement mechanism of the tunnel heading, therefore, has rarely been carried out. In this study, a large scale model testing for the pipe-reinforced tunnel heading in a granular soil was performed to understand reinforcing mechanism and improve design practice. Reinforcing patterns considered are non-reinforced, crown-only-reinforced, face-only-reinforced and crown and face-reinforced cases. The behaviour of ground and pipes was instrumented during tunnelling. The effects of reinforcing pattern and pipe length were investigated, particularly in terms of ground displacement and stress changes. Supplemental numerical analyses were carried out to investigate the effect of pipe length which cannot be covered by the model tests. It is revealed that the pipe reinforcement of heading increases longitudinal arching along the tunnel axis, decreases settlements significantly, and consequently improves the face stability.  相似文献   

12.
The suitability of geocell reinforcement in reducing rut depth, surface settlements and/or pavement cracks during service life of the pavements supported on expanded polystyrene (EPS) geofoam blocks is studied using a series of large-scale cyclic plate load tests plus a number of simplified numerical simulations. It was found that the improvement due to provision of geocell constantly increases as the load cycles increase. The rut depths at the pavement surface significantly decrease due to the increased lateral resistance provided by the geocell in the overlying soil layer, and this compensates the lower competency of the underlying EPS geofoam blocks. The efficiency of geocell reinforcement depends on the amplitude of applied pressure: increasing the amplitude of cyclic pressure increasingly exploits the benefits of the geocell reinforcement. During cyclic loading application, geocells can reduce settlement of the pavement surface by up to 41% compared to an unreinforced case – with even greater reduction as the load cycles increase. Employment of geocell reinforcement substantially decreases the rate of increase in the surface settlement during load repetitions. When very low density EPS geofoam (EPS 10) is used, even though accompanied with overlying reinforced soil of 600 mm thickness, the pavement is incapable of tolerating large cyclic pressures (e.g. 550 kPa). In comparison with the unreinforced case, the resilient modulus is increased by geocell reinforcement by 25%, 34% and 53% for overlying soil thicknesses of 600, 500 and 400 mm, respectively. The improvement due to geocell reinforcement was most pronounced when thinner soil layer was used. The verified three-dimensional numerical modelings assisted in further insight regarding the mechanisms involved. The improvement factors obtained in this study allow a designer to choose appropriate values for a geocell reinforced pavement foundation on EPS geofoam.  相似文献   

13.
轮胎与格室加筋路堤性能及承载力研究   总被引:2,自引:0,他引:2  
为研究废旧轮胎与土工格室加筋路堤边坡的性能,分别对废旧轮胎、土工格室加筋路堤边坡开展了室内模型试验,并考虑了填料两种不同相对密度的影响。试验结果表明:相对素土路堤而言,废旧轮胎和土工格室加筋路堤均能有效地提高承载力,增强其稳定性,减小不均匀沉降。加筋后均有效地增大了附加应力的扩散角,使得附加应力分布更为均匀,并且素土路堤与加筋路堤中轴线上附加应力差值随路堤深度增大而减小。中轴线以外的质点侧向位移随路堤深度的增加,呈现出先增大后减小的趋势,几种路堤中,废旧轮胎加筋路堤侧向位移最小。加筋效果随相对密度增大而减小,在低相对密度条件下,加筋后承载力能达到素土路堤2倍以上,而在高相对密度下却不足2倍。最后根据土工格室加筋地基承载力计算方法及对废旧轮胎加筋机理分析,提出了关于废旧轮胎加筋地基承载力计算方法。  相似文献   

14.
To evaluate the behavior of cohesive soil reinforced with a geotextile, 144 unconfined and 72 unconsolidated–undrained (UU) triaxial compression tests were conducted. The moisture content of soil during remolding, relative compaction, soil type, confining pressure, type and number of geotextile layers were all varied so that the behavior of the sample could be examined. The results provide evidence that as the moisture content increases, the peak strength of both the reinforced and unreinforced samples decreases and the axial strain at failure increases. Moreover, with increasing relative compaction the peak strength of the sample and axial strain at failure increases, whereas the peak strength ratio decreases. The peak strength ratio is the ratio of the peak strength of the reinforced samples to that of the unreinforced samples. For soils with low plasticity indices the main cause of the increase in the strength is the increase in the cohesion of the reinforced sample. However, in soils of higher plasticity index, as the number of geotextile layers increases, the internal friction angle of the reinforced samples increases.  相似文献   

15.
针对埋地管道开展了静载和循环荷载试验,综合分析了荷载类型、加载角度、管道外径和管道材质等因素对管道力学与变形性能以及管周土压力分布规律的影响。结果表明:静载作用下,管周土中垂直土压力大小与加载位置关系密切,水平土压力受“土拱效应”影响显著;管道呈现水平向外鼓胀、垂直径向压缩的椭圆状变形,且承压板荷载越大,管道变形越严重,同时管顶“土拱效应”越显著。循环荷载对埋地管道上方土层的沉降影响明显大于静载;改变承压板角度时效果差异明显,当加载范围关于管道轴线对称时埋地管道所受影响显著。对比不同外径和材质的埋地管道,发现当厚径比相同时,管径越大,壁厚越大,弹性模量也越大,管道的抗变形性能也就越好;公称压力相同时,聚丙烯管道抗变形能力强于外径相等的高密度聚乙烯管道。  相似文献   

16.
采用FALC3D对土工格栅加筋土地基载荷试验进行了进一步的数值模拟分析。根据计算结果,针对原型试验中难以量测的试坑变形及筋土界面摩阻力分布特征进行了讨论。利用数值模拟技术的优势,求解加筋地基的应变场,研究了加筋地基的破坏模式。结果表明:在竖向荷载作用下,试坑会发生侧向位移,通过加筋能有效减小试坑的侧向位移;筋土界面摩阻力的分布与筋土之间的相对位移直接相关;加筋地基的破坏机构因筋材的存在而发生改变,“深基础”效应以及“扩散层”效应都是加筋地基的增强机理,但地基的破坏模式随筋材的布置形式改变而有所不同。  相似文献   

17.
Current design standards for buried pipe installations assume that loading and bedding conditions along pipes are uniform, and thus do not take into account the effect of soil variability. However, although careful attention may be paid during pipe installation, there is still a possibility that a pipeline may experience non-uniform loading or bedding conditions during its lifetime, which may lead to pipe failure. Thus, these conditions should be addressed to understand the implications of construction practice and problems that may be detected after construction. In this paper, a parametric study employing three-dimensional finite element analysis is used to examine a continuous PVC water pipe. The objective is to understand the effect of non-uniform bedding support on the stability of buried PVC pressure pipes, and the longitudinal soil–pipe interaction. The numerical analyses are performed using ABAQUS. The results of the finite element analyses demonstrate that pipes with discontinuous bedding experience stresses higher than those with uniform ground support (37–69% higher for medium dense sand, and 45–95% higher for dense sand bedding), and that it is better to achieve uniform soil support under the pipe invert than to achieve non-uniform support in high stiffness (highly compacted) bedding (results that support conventional wisdom where a layer of uncompacted bedding is used under the invert in preference to well compacted bedding that is not level). The analysis also indicates that it is more important to achieve that uniform support under the invert than dense soil backfill under the haunches.  相似文献   

18.
Geosynthetics are widely used to reinforce slopes due to their successful performance and economical efficiency. A series of centrifuge model tests was conducted in order to investigate the behavior of the geotextile-reinforced cohesive slopes and to compare their behavior to unreinforced slopes. The displacement history of the slopes was measured using an image analysis system. The failure process of an unreinforced slope can be categorized into three stages: (1) uniform deformation stage; (2) strain localization stage; and (3) post-failure stage. The geotextile has a significant effect on the deformation of the slope and increases the stability level while affecting the failure modes. On a reinforced slope, two surfaces can result from the distribution of the displacement difference between the unreinforced and the corresponding reinforced slopes; thus, the slope can be categorized into three zones. The front zone is characterized as a restricted region that is subjected to a backward tension via the geotextile while the middle zone is mainly subjected to a forward tension (like a support body). The back zone is unaffected by the geotextile. The reinforcement can take effect when its length is longer than the effective reinforcement length. The effective reinforcement length usually increases with increasing elevation and is significantly affected by the inclination of the slope.  相似文献   

19.
片状剥离是具有二元结构特征的干旱区土遗址常见病害,常规的渗透方法对片状剥离加固效果不甚理想。研究以电渗法为借鉴,通过研制电渗装置并进行常压滴渗和电渗注浆的片状剥离对比渗透加固试验,证明电渗注浆能均匀加固半径与扩展加固深度。在此基础上以硅酸钠溶液进行不同电极布置形式下的电渗注浆渗透试验,通过分析试验过程中电流、注浆量、能耗系数变化遴选出正六边形为最优布置形式。然后以最优布置开展3种加固溶液的电渗注浆现场加固试验和加固土体的相关性质测试,研究结果表明:糯米浆和硅酸钠溶液不适用于电渗注浆加固;SH溶液电渗注浆加固后片状剥离层间黏结紧密,加固区土体贯入阻力、硬度、波速、抗风蚀性能和抗崩解性能均较未加固土体有显著提升。  相似文献   

20.
This paper suggests as a rather simple and innovative alternative of the induced trench method with the use of geocomposite replacing EPS geofoam for protection of shallow buried pipes. Laboratory model tests and the numerical studies have been conducted on induced trenches constructed with relatively thin drainage geocomposite, as compressible layers, placed into sand. A parametric study using numerical modelling was conducted considering different arrangements of compressible layers in order to optimize the use of these geosynthetics in rehabilitation and maintenance of shallow buried pipes. It was concluded that geocomposites have compressibility enough to replace EPS using diminished area, which favor the applicability for shallow pipelines protection. Reduction on vertical soil pressures over the crown of the pipe reached values of 90%. The stress reduction at the crown was found to be significant affected by the width of the geocomposite and its distance from the crown of the pipe. The use of a more compressible condition of sand backfill provide more efficiency as far the geocomposite is from the crown of the pipe. Results from numerical modelling also indicate that using more than two geocomposite layers led to negligible stress reductions compared to one layer solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号