首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2023,49(7):10455-10461
In this work, α-MnO2/BiVO4 nanocomposites with varying MnO2 contents (0–7 wt%) were successfully prepared via the simple chemical method. The structure, morphology, and optical properties of prepared nanocomposites were studied by various analytical techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic efficiency of α-MnO2/BiVO4 nanocomposites was studied via decomposition of rhodamine B (RhB) and tetracycline (TC) under exposure to visible light (λ ≥ 420 nm). Due to good structure and composite advantages, 5%MnO2/BiVO4 (MnBV-5) photocatalyst exhibited superior RhB and TC degradation efficiency to all other samples. In addition, the MnBV-5 photocatalyst showed good stability, and no apparent reduction in photocatalysis efficiency was noted after five testing cycles. Therefore, the MnO2/BiVO4 nanocomposite demonstrated a good potential for photocatalytic decomposition of new water contaminants.  相似文献   

2.
《Ceramics International》2016,42(3):4421-4428
Novel CdS/BiVO4 nanocomposites were synthesized by simple solvothermal method. The as-prepared samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis diffuse reflectance spectra (DRS), Fourier transform infrared spectra (FT-IR) and photoluminescence (PL). In the nanocomposites, CdS particles were deposited on the surface of the BiVO4. The photocatalytic tests showed that the CdS/BiVO4 nanocomposites possessed a higher rate for degradation of malachite green (MG) than the pure BiVO4 under visible light irradiation. The 1.5-CdS/BiVO4 nanocomposite photocatalyst was found to degrade 98.3% of MG under visible light irradiation. Moreover, the photocatalytic mechanism of CdS/BiVO4 nanocomposites was also discussed. The results showed that the nanocomposite construction between CdS and BiVO4 played a very important role in their photocatalytic properties, which has the potential application in solving environmental pollution issues utilizing solar energy effectively.  相似文献   

3.
《Ceramics International》2017,43(6):4866-4872
A unique Cu2O/TiO2 nanocomposite with high photocatalytic activity was synthesized via a two-step chemical solution method and used for the photocatalytic degradation of organic dye. The structure, morphology, composition, optical and photocatalytic properties of the as-prepared samples were investigated in detail. The results suggested that the Cu2O/TiO2 nanocomposite is composed of hierarchical TiO2 hollow microstructure coated by a great many Cu2O nanoparticles. The photocatalytic performance of Cu2O/TiO2 nanocomposite was evaluated by the photodegradation of methylene blue (MB) under visible light, and compared with those of the pure TiO2 and Cu2O photocatalysts synthesized by the identical synthetic route. Within 120 min of reaction time, nearly 100% decolorization efficiency of MB was achieved by Cu2O/TiO2 photocatalyst, which is much higher than that of pure TiO2 (26%) or Cu2O (32%). The outstanding photocatalytic efficiency was mainly ascribed to the unique architecture, the extended photoresponse range and efficient separation of the electron-hole pairs in the Cu2O/TiO2 heterojunction. In addition, the Cu2O/TiO2 nanocomposite also retains good cycling stability in the photodegradation of MB.  相似文献   

4.
《Ceramics International》2022,48(20):30294-30306
In this paper, a novel g-C3N4/2 wt% SnS2 nanocomposite was successfully synthesized using an in-situ growth of SnS2 on g-C3N4. X-ray diffraction (XRD), atomic force microscopy (AFM), Brunauer-Emmett-Teller (BET) method, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectrometer were used to characterize the photocatalysts. Exploring adsorption behavior, as an importatnt stage during photocatalytic reactions, is of great importance. Hence, both adsorption and photocatalytic performance of the synthesized photocatalysts have been investigated in detail. The adsorption isotherm fittings exhibited that Freundlich and Langmuir-Freundlich models can be applied to the methylene blue (MB) adsorption on the photocatalysts, indicating surface heterogeneity should be considered. A pseudo-second-order model was fitted to explore the adsorption kinetics. According to the observed redshift in the Fourier transform infrared spectroscopy (FTIR) result of g-C3N4/SnS2 nanocomposite, π-π interaction was dominant during MB adsorption. Also, a slight redshift and significant PL intensity reduction in g-C3N4/SnS2 nanocomposite led to 96% photocatalytic efficiency after 180 min under visible light radiation. The kinetics of photodegradation over g-C3N4/SnS2 was about 9 and 3 times higher than those of g-C3N4 and SnS2 photocatalysts, respectively. The superoxide and hydroxyl radicals were the main reactive species in the photocatalytic degradation with a Z-scheme charge transfer mechanism. The g-C3N4/SnS2 nanocomposite was found to be remarkably stable after three consecutive cycles of MB degradation.  相似文献   

5.
The narrow optical band gap, higher electrical conductivity, and wider-absorption range are three key features that a good photocatalyst must possess. Herein, we have fabricated Cu-doped MnO2 (Mn1-xCuxO2) nanostructure by facile wet chemical approach and formed its nanocomposite with r-GO (Mn1-xCuxO2/r-GO) via ultra-sonication approach. The successful replacement of host metal ions (Mn4+) with the dopant metal ions (Cu2+) was supported with the PXRD, FT-IR, and EDX characterizations. The effect of Cu-doping on the band gap and r-GO matrix on the conductivity of the fabricated nanocomposite was also evaluated via Tauc plots and I–V tests, respectively. The photocatalytic efficiency of the fabricated photocatalysts was tested and compared against the methylene blue (MB) under visible light irradiation. The photocatalytic experiments revealed that Mn1-xCuxO2/r-GO photocatalyst exhibited superior photocatalytic aptitude than that of pristine MnO2 and Mn1-xCuxO2 photocatalysts. More precisely, the Mn1-xCuxO2 photocatalysts degraded 86.89% MB dye at the rate of 0.021 min?1 after a 90-min exposure to the visible light. Observed superior catalytic activity of the nanocomposite can be attributed to the synergistic effects between the Cu doped MnO2 and r-GO nanosheets that resulted in its narrow band-gap (2.19 eV) and excellent conductivity (2.217 × 10?2 Scm?1).  相似文献   

6.
《Ceramics International》2016,42(11):13273-13277
Cu2O/exfoliated graphite composites (Cu2O/EG (1 wt%), Cu2O/EG (4 wt%), Cu2O/EG (7 wt%), Cu2O/EG (10 wt%), and Cu2O/EG (15 wt%)) were prepared by the precipitation method. The photocatalytic activity of the material was evaluated using the decolorization of methyl orange (MO) solution as model reaction. Results showed that Cu2O deposited on the worm-like flakes of EG in the form of nanocrystals. The EG provided a three-dimensional environment for photocatalytic reaction and endowed a high adsorption capacity for the sample. Under optimal conditions, the decolorization efficiencies of MO for 60 min reached 96.7%. Recycling of the catalyst showed Cu2O/EG composites (10 wt%) to possess high photocatalytic efficiency even when repeatedly used for five times.  相似文献   

7.
《Ceramics International》2022,48(5):6078-6086
Developing interfacial connections is one of the breakthrough strategies to improve the photocatalytic activity of graphene/p-n heterojunction systems. Herein, natural tragacanth mucilage, for the first time, was employed as cost-effective and ecofriendly surfactant to prepare highly efficient ZnO–ZnBi2O4/graphene hybrid photocatalyst. The results indicated that the methylene blue (MB) photocatalytic degradation efficiency of ZnO–ZnBi2O4/graphene-mucilage heterojunction, containing 10 wt% ZnBi2O4 and 1 wt% graphene, was ~1.2, 1.4, 3.1 and 8.3 times higher than that of ZnO–ZnBi2O4/graphene, ZnO–ZnBi2O4, ZnBi2O4 and ZnO samples, respectively. This significant improvement in the photocatalytic performance could be mainly ascribed to the desirable advantages of using natural mucilage as surfactant, including uniform distribution of ZnO–ZnBi2O4 nanoparticles on the surface of graphene sheets, increasing of the effective surface area, and improving of the charge carriers separation. Based on the trapping experiments, electron spin resonance and photoelectrochemical Mott-Schottky tests, direct Z-Scheme charge transfer mechanism with hydroxyl radicals as main active species was suggested for photocatalytic degradation of MB on the ZnO–ZnBi2O4/graphene-mucilage nanocomposite. This study provides a new insight to fabricate more homogeneous and close contact interfaces in graphene-based hybrid photocatalytic systems for environmental remediation.  相似文献   

8.
Porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures were synthesized by a template-free hydrothermal process at 160 °C for 24 h. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and UVvis spectroscopy. The photocatalytic activity of BiVO4 and BiVO4/Fe3O4 submicron structures were evaluated for the degradation of Rhodamine B (RhB) and methylene blue (MB) under visible light irradiation with and without the assistance of H2O2. According to the experimental results obtained, porous peanut-like BiVO4/Fe3O4 composite photocatalyst shows higher photocatalytic activity in the H2O2-assisted system under visible light irradiation compared to BiVO4. Recycling test on the BiVO4/Fe3O4 composite photocatalyst for the degradation of RhB under visible light irradiation indicates that the composite photocatalyst is stable in the H2O2-assisted system in five cycles. Therefore, this composite photocatalyst will be beneficial for efficient degradation of organic pollutants present in water and air under solar light.  相似文献   

9.
《Ceramics International》2020,46(14):21958-21977
The fabrication of nanocomposite photocatalytsts with excellent photocatalytic activity is an important step in the improved degradation of organic dyes. A series of nanocomposite photocatalysts was synthesized with g-C3N4 and ZnO loading contents of 10, 20 and 30%. The nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS). The optical band gaps of g-C3N4, ZnO and ZnAl2O4 were about 2.79, 3.21 and 3.55 eV, respectively. Methylene blue (MB) was degraded over the prepared photocatalysts under UV irradiation. Photocatalytic activity was about 9.1 and 9.6 times higher, respectively, on 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts than on pure ZnAl2O4 spinel powders. Recycling experiments showed that 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts exhibited good stability after five cycles of use.  相似文献   

10.
Decahedral BiVO4 was successfully synthesized with Tween-80 as a template by the microwave hydrothermal method. The effects of hydrothermal temperature and Tween-80 on crystal phase and morphology of the obtained BiVO4 were investigated. The crystal phase and morphology were characterized by X-ray diffraction, field emission scanning electron microscopy and UV–vis diffuse reflectance spectroscopy. The results indicated that the as-prepared decahedral BiVO4 was monoclinic. The photocatalytic behavior for methylene blue (MB) degradation was enhanced with the assistance of an appropriate amount of hydrogen peroxide (H2O2) under visible light irradiation. The photocatalytic tests indicated that the photocatalytic efficiency of decahedral BiVO4 synthesized at 180 °C was 63.5%. However, BiVO4 sample synthesized at 160 °C showed the highest photocatalytic degradation rate, up to 81.6%, due to its small size and crystal defects.  相似文献   

11.
p–n junction photocatalyst p-CaFe2O4/n-ZnO was prepared by ball milling of ZnO in H2O doped with p-type CaFe2O4. The structural and optical properties of the p–n junction photocatalyst p-CaFe2O4/n-ZnO were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflection spectrum (DRS) and fluorescence emission spectra. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic degradation of methylene blue (MB). The results showed that the photocatalytic activity of the p-CaFe2O4/n-ZnO was higher than that of ZnO. When the amounts of doped p-CaFe2O4 were 0.0 wt.% and 1.0 wt.%, the photocatalytic degradation efficiencies were 50.1 and 73.4%, respectively. Effect of ball milling time on the photocatalytic activity of the photocatalyst was also investigated. The mechanisms of influence on the photocatalytic activity were also discussed by the p–n junction principle.  相似文献   

12.
《Ceramics International》2021,47(24):34253-34259
In this study, titanium (Ti) was used as an active dopant to incorporate into BiVO4 lattice using the hydrothermal method. The synthesized BiVO4 and Ti–BiVO4 with 1, 5 and 10 wt% of Ti dopants have been applied for photocatalytic decomposition of Tetracycline under visible light irradiation. The characterized results showed that this synthesized BiVO4 and Ti–BiVO4 materials existed in a form of spherical particles. The particle sizes of the Ti–BiVO4 were much bigger than that of the BiVO4. However, Ti dopants effectively enhanced visible light absorption, decreased band gap energy as well as prevented electron-hole recombination of the BiVO4 leading to increase in photocatalytic activities of the doped materials. The obtained results from photocatalytic experiments indicated that the 5Ti–BiVO4, whose weight ratio of Ti was 5%, was the best material for TC degradation (78.49%). Recycling tests were consecutively carried out in 4 runs to demonstrate the stability of the BiVO4 photocatalyst with 5 wt% of Ti dopant.  相似文献   

13.
《Ceramics International》2022,48(6):7613-7621
In this study, we demonstrate for the first time the construction of a ternary BiVO4/FeVO4/Cu2O nanorod array (NRA) photoelectrode via seed-assisted refluxing, hydrothermal and successive ionic-layer adsorption and reaction (SILAR) method and its photoelectrochemical (PEC) water oxidation performance. The energy band structures of the BiVO4, FeVO4 and Cu2O show that two type-II band alignments with a ladder-like structure are formed in the constructed ternary BiVO4/FeVO4/Cu2O NRA photoelectrode, enabling the photoelectrode to display substantially enhanced PEC performance. The constructed ternary photoelectrode loaded with the optimized Cu2O nanoparticles achieves a zero-bias photocurrent density of 50 μA cm?2, 5 times higher than that of the pure BiVO4 NRA photoelectrode. The measurements of optical property reveal that the constructed BiVO4/FeVO4/Cu2O nanorod arrays (NRAs) demonstrate improved light absorption capability. The electrochemical impedance and photoluminescence measurements confirm that the charge carriers of the BiVO4/FeVO4/Cu2O heterojunction NRAs are transferred and separated effectively. The substantially boosted PEC water oxidation activity of the constructed ternary BiVO4/FeVO4/Cu2O heterojunction NRA photoelectrode is ascribed to the improved light harvesting and effective charge separation.  相似文献   

14.
《Ceramics International》2020,46(11):18534-18543
The Bismuth based Zinc metal oxide (ZnBi12O20) nanorods were synthesized via single step solvothermal approach. The characterization of synthesized hybridized structure was done by several analysis such as X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UVvis–DRS), Fourier transform-infrared spectroscopy (FT–IR), Thermogravimetric analysis (TGA), Raman spectroscopy, Field-Emission scanning electron microscopy (FESEM), Energy dispersive analysis of X-rays (EDX), High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy. The photocatalytic activity of ZnBi12O20 and an incorporation of varying weight percentages of GO (1–4 wt %) into ZnBi12O20 catalyst (GZBC) were analyzed under visible light irradiation by the degradation of an aqueous solution of Methylene blue (MB) and Methyl orange (MO) dye. Among various developed nanocomposites, 3 wt% GZBC reduced graphene oxide exfoliated nanocomposites has revealed the degradation efficiency as 96.04, 94.52% at 100 and 120 min for MB and MO respectively with enriched visible light absorption range. The photocatalytic property of 3 wt % reduced graphene oxide exhibits higher degradation behavior than that of other synthesized nano-composites.  相似文献   

15.
Cu2ZnSnS4 nanoparticle with an average diameter of approximately 31 nm has been successfully synthesized by a time effective microwave fabrication method. The crystal structure, surface morphology, and microstructure of the Cu2ZnSnS4 nanoparticle were characterized. Moreover, the visible light photocatalytic ability of the Cu2ZnSnS4 nanoparticle toward degradation of methylene blue (MB) was also studied. About 30% of MB was degraded after 240 min irradiation when employing Cu2ZnSnS4 nanoparticle as a photocatalyst. However, almost all MB was decomposed after 90 min irradiation when introducing a small amount of H2O2 as a co-photocatalyst. The enhancement of the photocatalytic performance was attributed to the synergetic effect between the Cu2ZnSnS4 nanoparticle and H2O2. The detailed photocatalytic degradation mechanism of MB by the Cu2ZnSnS4 was further proposed.  相似文献   

16.
《Ceramics International》2023,49(7):10420-10427
The present study focuses on taking advantage of both Zinc Silicate (Zn2SiO4) and Zinc Oxide (ZnO) crystals in the glass matrix for enhancing photocatalytic activity. The fabricated samples were used as a photocatalyst for degrading ~ 5 mg/L concentrated “Methylene Blue” (MB) and “Rhodamine B” (RB) dye separately under visible light. For this, 44 SiO2:11 Al2O3:35 ZnO:10 K2O compositions were prepared via the traditional melt quench process followed by heat treating at a temperature of 750 °C at 2, 4, and 6 h. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) was employed to characterize the fabricated samples. The bandgap measured from Differential reflectance spectroscopy (DRS) was found to decrease with an increase in the heat treatment duration. 44 SiO2:11 Al2O3:35 ZnO:10 K2O composition heat-treated at 750 °C for 2 h degraded ~59% and ~71% of Rhodamine B (RB) dye and Methylene Blue (MB) dye under visible light in 4 h.  相似文献   

17.
《Ceramics International》2020,46(11):19084-19091
In this work, a holmium oxide (Ho2O3/CNT) photocatalysts were successfully synthesized through a MOF assisted route for the first time. The effects of the morphology and purity on the photocatalytic behavior of the products, were investigated by determining various physicochemical properties. The Ho2O3/CNT nanocomposite was systematically analyzed by powder X-ray diffraction (P-XRD), transmission electron microscopy (TEM), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies. The Ho2O3 derived from a MOF assisted synthetic route using Ho(NO3)3·5H2O and terephthalic acid with a 1:1 M ratio at a temperature of 750 °C for 3 h prove the most advantageous, 98% degradation of 20 mg/L aqueous tetracycline pollutant was observed within 60 min. The elevated photocatalytic activity was mainly attributable to the unique synthetic route, improved crystallinity, wide UV-light absorption rate and excellent adsorption capabilities of CNT, as well as enhanced oxygen deficiency. The photocatalytic results confirm that the Ho2O3/CNT nanocomposite is an efficient photocatalyst for the degradation of toxic tetracycline pollutant and is thus suitable for use in environmental remediation.  相似文献   

18.
《Ceramics International》2020,46(17):26715-26723
In the present study, Cu2ZnSnS4 (CZTS) powder was synthesized by the mechano-chemical method from its elemental constituents. X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and diffusion reflectance spectroscopy (DRS) were used for characterization of structural, morphological and optical properties. XRD result confirmed that a highly crystalline CZTS phase corresponding to the kesterite structure was formed after 50 h ball milling. Raman analysis confirmed the existence of single phase CZTS without any other phases. FESEM and TEM images reveal the irregular CZTS nanoparticles with an average size of 90 nm. The elemental mapping of the CZTS nanopowder showed the uniform distribution in agreement with the stoichiometry. DRS result showed a band gap value of 1.53 eV. XPS result revealed the oxidation states as Cu+, Zn2+, Sn4+ and S2−. The photocatalytic activity of CZTS has been investigated through photodegradation of methylene blue (MB) and methyl orange (MO) dyes solution with different concentrations under visible light irradiation. Although the CZTS decomposed MO only 81% until 210 min, the MB solution was completely photodegraded after 100 min. A kinetic study by Langmuir-Hinshelwood (L-H) model indicated about 3.7 times faster degradation of MB than MO and also higher adsorption capacity for MB by CZTS. Furthermore, the prepared CZTS was reusable and can be repeatedly used for the removal of dyes from aqueous solutions.  相似文献   

19.
《Ceramics International》2020,46(9):13517-13526
In this study, a magnetically recyclable Ni1-xCdxCeyFe2-yO4-rGO (x, y = 0.05) (NCCF-rGO) nanocomposite photocatalyst has been prepared by following a facile in-situ co-precipitation method combined with ultra-sonication means. The as-synthesized magnetically separable NCCF-rGO nanocomposite photocatalyst efficiently degrades methylene blue (MB) dye in comparison to bare Ni1-xCdxCeyFe2-yO4 (x, y = 0.05) (NCCF) nanoparticles (NPs) under visible light irradiation. The photo-degradation rate of MB with NCCF-rGO was ~9 times higher than NCCF nanoparticles (NPs). This enhanced photocatalytic performance of NCCF-rGO photocatalyst was due to the presence of reduced graphene oxide, which greatly help in production of photoactive species by reducing the rate of electro-hole pair recombination. The role of photoactive species that were responsible for the photocatalytic degradation of methylene blue has also been investigated. The as-synthesized NCCF-rGO photocatalyst expressed superb chemical stability and photocatalytic activity even after seven cycle runs. Moreover, the NCCF-rGO nanocomposite worked at all pH values and showed good acid resistance. In particular, the as-synthesized NCCF-rGO photocatalyst could be collected for the next cycle run by simply applying an external magnetic field. Hence, the NCCF-rGO nanocomposite could have potential use in organic dyes contained wastewater treatment.  相似文献   

20.
Microcystins (MCs) is a harmful toxin generated by blue-green algae in water, which has seriously threatened the ecological safety of water and human body. It is urgent to develop new catalysts and techniques for the degradation of MCs. A feasible electrostatic self-assembly method was carried out to synthesize BiVO4/g-C3N4 heterojunction photocatalyst with highly efficient photocatalytic ability, where BiVO4 nanoplates with exposed {010} facets anchored to the g-C3N4 ultrathin nanosheets. The morphology and microstructure of the heterojunction photocatalysts were identified by XRD, SEM, TEM, XPS, and BET. The g-C3N4 nanosheets have huge surface area over 200 m2/g and abundant mesoporous ranging from 2-20 nm, which provides tremendous contact area for BiVO4 nanoplates. Meanwhile, the introduction of BiVO4 led to red-shift of the absorption spectrum of photocatalyst, which was characterized by UV-vis diffuse reflection spectroscopy (DRS). Compared with pure BiVO4 and g-C3N4, the BiVO4/g-C3N4 heterojunction shows a drastically enhanced photocatalytic activity in degradation of microcystin-LR (MC-LR) in water. The MC-LR could be removed within 15 minutes under the optimal ratio of BiVO4/g-C3N4. The outstanding performance of the photocatalyst is attributed to synergetic effect of interface Z-scheme heterojunction and high active facets {010} of BiVO4 nanoplates, which provides an efficient transfer pathway to separate photoinduced carriers meanwhile endows the photocatalysts with strong redox ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号