首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Novel blue pigments based on Ba0.956Mg0.912Al10.088-xNixO17 (0 ≤ x ≤ 0.3) and Ba0.956Mg0.912Al10.088-xCoxO17 (0 ≤ x ≤ 0.3) solid solutions were successfully synthesized by solid state method. The XRD results confirmed the structure of the as-synthesized sample belongs to hexagonal β-alumina structure with the space group of P63/mmc. The d-d electron transitions in Ni2+/Co2+ tetrahedral sites in the visible light range are the reason for the blue colors. Then, the as-prepared blue oxides were sintered with ZrO2 powders at 1400 °C to prepare blue zirconia ceramic materials. Based on XRD and SEM analysis, the pigment phase is stable after high-temperature sintering with ZrO2, and a clear grain boundary is observed. The XCT results indicate the prepared blue ceramics are dense and very small pores are rarely distributed inside the blue zirconia ceramic body. Additionally, the mechanical properties of the fabricated blue ceramics were maintained compared to pure ZrO2 ceramic.  相似文献   

2.
《Ceramics International》2022,48(6):7850-7854
The novel orange to red color Bi24Al2-xCrxO39 (0≤ x ≤ 0.5) compounds were successfully synthesized by the solid state method. With the increase of Cr content, the colors of compounds are tuned from orange red to dark red. The X-ray diffraction patterns of all samples are indexed with cubic Bi24Al2O39 structure with the space group of I23. The oxidation state of Cr in the oxide is confirmed to be +4 valence by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Based on the analysis of Cr oxidation state and UV–Visible spectrum, the red hue is due to the d-d transition of Cr4+ in tetrahedral sites. The as-synthesized red color compounds also show excellent stability in acid and base environments.  相似文献   

3.
Mn-doped Ba7Al2-xMnxO10+y (0 ≤ x ≤ 0.7) samples with intense blue colors are successfully prepared by solid state reactions. With the increase of Mn content, the colors of compounds are tuned from cyan to ocean blue. FT-IR absorption spectrum and 27Al NMR spectrum indicate that the structure contains a dominating portion of Al–O tetrahedral sites while a small number of Al–O octahedral sites may also exist. The oxidation state of Mn is proved to be +5. Based on all the analysis, the intense blue shades of the samples are proposed as the d-d transition of Mn5+ ions in [AlO4] tetrahedral sites.  相似文献   

4.
《Ceramics International》2021,47(20):28487-28492
In this work, the microwave dielectric properties of Ba4(Nd1-yBiy)28/3Ti18-x(Al1/2Ta1/2)xO54(0≤x≤2, 0.05≤y≤0.2) ceramics co-substituted by A/B-site were studied. Firstly, (Al1/2Ta1/2)4+ was used for substitution at B-site. At 0≤x≤1.5, the above mentioned ceramic was found to exist in single-phase tungsten bronze structure, but at x = 2.0, the secondary phase appeared. Although the dielectric constant decreased by doping the (Al1/2Ta1/2)4+, but the quality factor was observed to improve by 40% and the temperature coefficient of resonant frequency decreased by 75%. Based on the above results, Bi3+ was introduced to Ba4Nd28/3Ti17(Al1/2Ta1/2)O54. The introduction of Bi3+ reduced the sintering temperature, greatly improved the dielectric constant, and ultimately decreased the temperature coefficient of resonant frequency, but it led to deterioration of quality factor. At last, with appropriate site-substitution content control (x = 1.0,y = 0.15), excellent comprehensive properties (εr = 89.0, Q × f = 5844 GHz @ 5.89 GHz,TCF = +8.7 ppm/°C) were obtained for the samples sintered at 1325 °C for 4 h.  相似文献   

5.
Novel stablized green Ni0.15MgxAl2(0.85-x)Ti1.15+xO5 (0 ≤ x ≤ 0.25) pigments were prepared by solid-state method using Ni2O3 as colorant and Mg(CH3COO)2‧4H2O as auxiliary stabilizer. The synthesised pigments were characterized via XRD, XPS, SEM, TEM, UV-Vis, and automatic colorimeters. The results show that Mg-doping increases the oxygen vacancies, resulting in a positive shift of the binding energy of Ni2+ irons. The formation of Ni0.15MgxAl2(0.85-x)Ti1.15+xO5 solid solution greatly increases the energy transfer energy and shifts the emission to lower wavelengths (530 nm), corresponding to the visible diffuse reflection of green light. The chromaticity of the pigment changed little (L*=72.51, a*=−18.16, b*=20.94) at 1200 ℃ for 10 h, showing excellent thermal stability. The properties especially excellent thermal stability makes it promising novel green pigments in ceramic industry application.  相似文献   

6.
Solid solutions Ca(DxM1?x)O3 (M = Ti, Zr and D = Fe,Cr), have been studied as ceramic pigment in conventional ceramic glazes using 0.5 mol/mol of NH4Cl as flux agent by solid state reaction and by ammonia coprecipitation route. Ca(CrxTi1?x)O3 compositions obtained without addition of NH4Cl as mineralizer, produce pink color in glazes at low x but CaCrO4 crystallizes when x increases, producing undesired green colors. The crystallization of chromates can be avoided using NH4Cl as mineralizer, giving a complete solid solution that produce pink color in glazes at low x and dark blue shades at high x. Coprecipitated sample produce blue colors at low x and at low temperature than ceramic sample (1000 °C instead 1200 °C for CE sample). Cr4+ ion acts as red chromophore, but at higher x values (blue samples) Cr3+ ion entrance affects the color. Ca(FexTi1?x)O3 system crystallizes perovskite CaTiO3 and pseudobrookite Fe2TiO5 together with rutile as residual crystalline phase, glazed samples change from a yellow to a pink color associated to the increase of pseudobrookite with firing temperature. Ca(FexTi1?x)O3 and Ca(CrxZr1?x)O3 systems crystallize perovskite CaZrO3 and zirconia (ZrO2) in both monoclinic and cubic polymorphs, but iron or chromium oxides are not detected in the powders. Coprecipitated sample stabilises cubic form. The solid solution is not reached completely in these samples and is not stable in glazes.  相似文献   

7.
In this paper, the crystal structure, vacancy defect, local electron density and magnetic properties of Gd1-xCaxCrO3 (0 ≤ x ≤ 0.3) polycrystalline samples were investigated systematically. The crystal structural analyses show that all the samples are orthorhombic phase and a structural distortion happens around x = 0.3. Due to the formation of Cr4+ ions, both the lattice constant and the Cr–O bond length decrease. The results of positron annihilation spectrum reveals that the vacancy defect concentration increases and the local electron structure changes with the introduction of Ca2+ ions. The field-cooled (FC) and zero-field cooled (ZFC) curves of Gd1-xCaxCrO3 samples measured under H = 100 Oe exhibits negative magnetization characteristics due to the interaction between Gd3+ and Cr3+ ions, and the magnetism can be affected by the structural distortion.  相似文献   

8.
In this work, the effects of Cu composition on the thermal stability of the dielectric and nonlinear properties of CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.2) ceramics obtained via a polymer-pyrolysis chemical process were studied. The mean grain sizes of Cu-stoichiometric (x = 0), Cu-deficient (x < 0) and Cu-excess (x > 0) CaCu3+xTi4O12 ceramics were found to be ~3.2, ~3.4 and ~3.7 μm, respectively. Interestingly, very good dielectric properties (0.020 ≤ tanδ ≤ 0.038 and 4000 ≤ ε′ ≤ 7065) were attained in CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.1, excluding x = 0.2) ceramics. Moreover, the variation of dielectric constant (ε′) within a limit of ±15% (Δε± 15%) over a wide temperature range (TR) of ?70 – 220 °C with low tanδ < 0.05 (tanδ<0.05) over a TR of ?70 to 80 °C were achieved in a CaCu2.8Ti4O12 ceramic. These results suggest that this ceramic could be applicable for X9R capacitors and energy storage devices that require high thermal stability. Additionally, the nonlinear properties of Cu-nonstoichiometric ceramics could be improved when compared with those of the Cu-stoichiometric material. The incremental changes of dielectric and nonlinear properties of CaCu3+xTi4O12 (?0.2 ≤ x ≤ 0.2) ceramics revealed the significant role of Cu composition on grain boundary resistance (Rgb), which was confirmed by impedance spectroscopy analysis. In addition, XANES results revealed the proper ratios of Cu+:Cu2+ and Ti3+:Ti4+ found in these ceramics, indicating the semiconducting behavior of these grains.  相似文献   

9.
Solid solutions based on BaAl12-xMxO19 (M = Co2+, Ni2+) showing intense blue shades were successfully synthesized by conventional solid state reaction. Then, novel zirconia ceramic materials with intense blue hues were then prepared upon addition of 5 wt% of the synthesized chromophore to a ZrO2 white matrix containing 5 wt% Y2O3 and sintered at 1400 °C for 6 h. The colors of the BaAl12-xCoxO19 or BaAl12-xNixO19 are due to the d-d transitions of Co2+ or Ni2+ in tetrahedral coordination, respectively. The colored zirconia ceramics were all indexed with tetragonal phase. The coexistence of the chromophore and ZrO2 were observed by scanning electron microscopy and energy dispersive spectrometer. The hardness of the as-synthesized blue zirconia ceramic was slightly higher as compared to the pure undoped sample.  相似文献   

10.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

11.
《Ceramics International》2023,49(10):15304-15314
In this paper, a series of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 (0.0 ≤ x ≤ 0.4) ceramics were prepared via the conventional solid-state method. The influences of (Co1/3Nb2/3)4+ complex ions on the phase composition, spectral characteristics, microstructure, and microwave dielectric properties of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 ceramics were studied systematically. XRD analysis accompanied with Rietveld refinements showed that pure Li2ZnTi3O8 solid solution ceramics with the cubic spinel structure were obtained at x = 0.2–0.4. New Raman-active mode of about 858 cm−1 should be attributed to the vibrations of NbO6 due to the high bond energy of Nb–O bonds, exerting a certain impact on the structure and performance of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 ceramics. XPS results indicated that Nb5+ ion donor suppressed the deoxidation process and therefore resulted in the disappearance of Ti3+ ion and oxygen vacancy. The downward trend variation in the εr value with the increase of (Co1/3Nb2/3)4+ content could be explained by the presence of “compressed” cations and “rattling” cations effect. In addition, the Q × f of the current ceramics was closely dependent on relative density, grain size, FWHM, and oxygen vacancy. Good combined microwave dielectric properties of εr = 24.5, Q × f = 91,250 GHz, and τf = −16.8 ppm/°C were achieved for the Li2Zn[Ti0.8(Co1/3Nb2/3)0.2]3O8 ceramic sintered at 1120 °C. High quality factor gives evidence that the Li2Zn[Ti0.8(Co1/3Nb2/3)0.2]3O8 ceramic is an appealing candidate for highly selective microwave devices.  相似文献   

12.
《Ceramics International》2019,45(14):17157-17162
The (S, N) co-doped Ba2In2-xCrxO5+y (0 ≤ x ≤ 0.5) oxides are successfully obtained by mixing the Ba2In2-xCrxO5+y oxides and thiourea through a simple ball milling method followed by sintering at 400 °C for 3 h. The colors of the compounds change from orange-brown to yellow-green after reacting with thiourea. When Cr amount is small (x = 0.1), the crystal structure of (S, N) co-doped Ba2In2-xCrxO5+y is orthorhombic Ba2In2O5 phase. When x ≥ 0.3, the crystal structure of the sample is cubic BaInO2.5 phase. And this phase transition is the same as Ba2In2-xCrxO5+y. XPS results reveal that Cr6+ in Ba2In2-xCrxO5+y (0 ≤ x ≤ 0.5) oxides are reduced to Cr3+ after sintering. S exists in both cation and anion forms, and N exists in substitutional forms. UV–Vis analysis indicates that the yellow-green hue comes from the d-d transition of Cr3+, and the doping of S, N ions leads to a red shift of the absorption edge of the samples.  相似文献   

13.
《Ceramics International》2021,47(20):28892-28903
LaMgAl11O19-type magnetoplumbite holds great promise to be used above 1300 °C as thermal barrier coatings (TBCs), but its practical application has been restricted because of inferior thermophysical properties. Herein, we focus on optimizing the thermophysical properties of LaMgAl11O19 by simultaneously substituting La3+ and Al3+ ions with Nd3+ and Sc3+ ions, respectively. Results show that the effects of co-substitution on reducing thermal conductivity are pronounced. The thermal conductivities of La1-xNdxMgAl11-xScxO19 (x = 0, 0.1, 0.2, 0.3) ceramics decrease progressively with dopant concentration and a lowest thermal conductivity of 2.04 W/(m·K) is achieved with x = 0.3 at 1000 °C, which is a value superior to pure LMA and even lower than YSZ. The mechanisms behind the lowered thermal conductivity are investigated. Increase of the thermal expansion coefficient is also realized (8.53 × 10−6 K−1 for pure LMA, 9.07 × 10−6 K−1 for x = 0.3, 1300 °C). Most importantly, Nd3+ and Sc3+ combination doping indeed facilitates mechanical properties of La1-xNdxMgAl11-xScxO19 solid solutions as well. It should be noted that Sc3+ doping at Al3+ site plays more effective role in improving thermal properties than Nd3+ does at La3+ site. This work provides a path to simultaneously integrate low thermal conductivity, good phase stability, moderate thermal expansion behavior and excellent mechanical properties on LMA for the next generation TBCs.  相似文献   

14.
《Ceramics International》2022,48(10):14060-14066
The vacancy defects, optical and magnetic properties of GdCr1-xTixO3 (0≤x ≤ 0.05) polycrystalline samples were investigated in this research. The crystal structural analyses show that the orthorhombic perovskite structure exists in all the samples. The positron annihilation spectra reveal that the vacancy defects and local electron density vary with the change of Ti ions valence states. The magnetic measurements show that the antiferromagnetic transition is shifted to lower temperature with the replacement of Ti ions in Cr sites, and the value of spin reorientation caused by the exchange interaction between Gd3+ ion and Cr3+ ion can be influenced by the change of Ti ions valence states, which rises from x = 0 to 0.04 and then decreases at x = 0.05 sample. Simultaneously, the optical band gap decreases from 2.7 eV to 0.8 eV with the introduction of Ti ions into the lattice, the result can provide a reference for improving optical activity of rare-earth chromium oxides.  相似文献   

15.
Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 GHz@14.7 GHz (x = 0) to 150,500 GHz@14.5 GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, τf = ?3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, τf = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies.  相似文献   

16.
The effects of structural characteristics on the dielectric properties of (Zn1/3A2/3)0.5(Ti1?xBx)0.5O2 (A = Nb5+, Ta5+, B = Ge4+, Sn4+) (0.1  x  0.3) ceramics were investigated at microwave frequency. The sintered specimens showed solid solutions with a tetragonal rutile structure within the solid solution range of compositions. With an increase of BO2, the temperature coefficient of resonant frequency (TCF) and dielectric constant (K) decreased with a decrease of oxygen octahedral distortion and dielectric polarizabilites, respectively. However, the quality factor (Qf) of the sintered specimens was increased with BO2 due to the reduction of Ti4+ ions. The Qf value of the specimens with A = Ta was higher than that of the specimens with A = Nb.  相似文献   

17.
《Ceramics International》2022,48(13):18723-18729
Herein, the Bi substitution for Sm in garnet Sm3-xBixGa5O12 (x = 0–0.4) microwave dielectric ceramics is reported. A single garnet-structure phase could be achieved when Bi3+ content is in the range of 0 ≤ x ≤ 0.3. The addition of Bi3+ effectively reduces the sintering temperature of Sm3Ga5O12 ceramics from 1440 °C to 1140 °C. Furthermore, the relationship between the structure and properties of Sm3-xBixGa5O12 ceramics was investigated by Raman, SEM, TEM, and complex chemical bonding theory. The dielectric constant of Sm3-xBixGa5O12 (0 ≤ x ≤ 0.3) ceramics increases slightly from 12.68 to 13.35, which is closely related to an increase in the polarizability and the bond susceptibility χμ. The Q × f increases from 107,617 GHz to 137,069 GHz, which is related to the lattice energy and the Raman FWHM values. The τf value of Sm3-xBixGa5O12 gradually shifted in the positive direction with the increase of Bi content and the best performance (εr = 13.35, Q × f = 137,069 GHz and τf = ?15.37 ppm/°C) was obtained at x = 0.3.  相似文献   

18.
《Ceramics International》2022,48(24):36186-36192
In this paper, a series of BaMg2-xZnxV2O8 (0.02 ≤ x ≤ 0.08) ceramic has been obtained by ionic substitution at the Mg-site of BaMg2V2O8 ceramics through the conventional solid-state reaction method. The relationship between the surface morphology and the microwave properties of ceramic samples was analyzed intensively. The results showed that the substitution of Mg2+ by an appropriate amount of Zn2+ can promote their densification, lower their sintering temperature, and reduce the dielectric loss of BaMg2V2O8 ceramics significantly. The BaMg1.98Zn0.02V2O8 ceramic exhibits microwave dielectric properties as εr ~13.4, Q × f ~ 178,760 GHz, τf ~ -14.9 ppm/°C at the optimum sintering temperature (940 °C). This indicates that the ceramic prepared in this work, which combines low dielectric loss, good temperature stability, and low-temperature sintering ability, can be an ideal microwave dielectric material for low-temperature co-firing technology.  相似文献   

19.
《Ceramics International》2020,46(8):11474-11483
High permittivity Ba4(Pr1-xSmx)28/3Ti18-yAl4y/3O54(0.4≤x ≤ 0.7, 0≤y ≤ 1.5) ceramics were synthesized using a standard solid-state method. The effects of Sm3+ substitution into the A-site and Sm3+/Al3+ cosubstitution into the A/B-sites on the microstructure, crystal structure, Raman spectra, infrared reflectivity (IR) spectra and dielectric characteristics were investigated in a Ba4Pr28/3Ti18O54 solid solution. In the ceramic samples of Ba4(Pr1-xSmx)28/3Ti18O54(0.4≤x ≤ 0.7), Sm3+ partial substitution for Pr3+ could improve the quality factor (Qf) value and reduce the TCF value. Nevertheless, the quality factor (Qf~10,000GHz) needed further improvement and the TCF values (+12.3~+35.4 ppm/°C) were still too large. Therefore, Al3+ was introduced for further optimization of the TCF values and Qf values of the Ba4(Pr1-xSmx)28/3Ti18O54 ceramics. Sm/Al cosubstitution led to a good combination of high εr (εr ≥ 70), high Qf (Qf ≥ 12,000 GHz), and near-zero TCF (−10 < TCF < +10 ppm/°C) in a wide range (0.4≤x ≤ 0.7). Infrared reflectivity (IR) spectra indicated that A-TiO6 vibration modes gave the primary contribution rather than Ti–O bending and stretching modes. The decrease in the degree of B-site cations order could be confirmed by Raman spectra. XPS results demonstrated that the improvement of quality factor (Qf) value was strongly related to the suppression of Ti3+. Excellent dielectric properties were achieved in Ba4(Pr1-xSmx)28/3Ti18-yAl4y/3O54 microwave ceramics with x = 0.5 and y = 1.25: εr = 72.5, Qf = 13,900GHz, TCF = +1.3 ppm/°C.  相似文献   

20.
《Ceramics International》2020,46(15):24071-24082
Pristine chromium oxide (Cr2O3) and nickel ions (Ni2+) substituted Cr2O3 nanoparticles were synthesized using a simple co-precipitation technique. The main objective of this work is to investigate Ni2+ substituent's role at different concentrations on the structural, morphological, optical, and magnetic properties of Cr2O3 nanoparticles. Structural analyses based on X-ray diffraction (XRD), Raman and Fourier transform infra-red (FTIR) data confirmed the successful incorporation of Ni2+ into Cr2O3 nanoparticles up to x = 0.05 of Ni2+ content, without affecting the rhombohedral crystal structure of Cr2O3 nanoparticles. Rietveld refinement results showed the variation in lattice parameters and cell volumes alongwith the substitution of Ni2+ into Cr2O3 nanoparticles. Raman and FTIR spectra also depicted a considerable shift in the characteristic vibration modes of Cr2O3 nanoparticles due to strain-induced by Ni2+ substitution. Beyond x = 0.05, the structural transformation took place from rhombohedral to cubic crystal structure. Subsequently, new peaks (apart from Cr2O3 phase modes) have been observed at x = 0.1 of Ni2+ content due to the formation of secondary phase i.e., nickel chromate (NiCr2O4). Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) illustrated the changes in the morphology of Cr2O3 nanoparticles with Ni2+ substitution. UV–Vis analysis revealed a narrowing of optical band energy (Eg) of Ni2+ substituted Cr2O3 nanoparticles from 3 to 1.85 eV as Ni2+ content varies from x = 0 to 0.2, respectively. Afterward, there is an increase in optical band gap energy (Eg) when Ni2+ content increased from x = 0.3 to 0.5, as NiCr2O4 started dominating the Cr2O3 phase. Single-phase Ni2+ substituted Cr2O3 nanoparticles exhibited a superparamagnetic behavior, whereas the multi-phase compound ascribed to both superparamagnetic and paramagnetic. These changes in optical and magnetic properties can lead to novel strategies to render applications in the field of optoelectronics and optomagnetic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号