首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2023,49(10):15055-15064
Niobium carbide composite coatings with Nb2C, NbC, Nb3Si as the main phases were prepared in situ on the surface of TC4 titanium alloy by plasma spraying Nb–SiC composite powder. The microstructure of the coating was characterized in detail by TEM, and the reaction mechanism of Nb–SiC was revealed. Sub-micron and nano-scale NbC grains dispersed in Nb3Si region, nano-Nb/Nb3Si cellular eutectic region, and equiaxed Nb2C nanograins region were formed in the coating. The research results show that Nb and SiC reacted firstly to form cubic NbC and Nb3Si phases during the plasma spraying process. Then, NbC with a higher melting point took the lead in crystallization during the cooling process of the coating, forming sub-micron and nano-scale NbC granular fine grains. Nb3Si with a lower melting point crystallized around the sub-micron and nano-scale NbC granular fine grains in the subsequent cooling process. In the plasma spraying process, the molten droplets formed Nb/Nb3Si cellular eutectic structure under large temperature gradient and extremely fast cooling rate. The remaining Nb in the raw material powder formed a diffusion couple with NbC to generate fine and dispersed nano-equiaxed Nb2C with cubic structure. The present investigation provides a reference for the reaction synthesis of advanced nanocomposites using Nb–SiC system.  相似文献   

2.
《Ceramics International》2020,46(6):7055-7064
In this work, ablation properties of NbC and NbC-25 mol.% ZrC coating, deposited on SiC-coated C/C composites by supersonic atmospheric plasma spraying, were tested by an oxyacetylene torch. Results showed that, for NbC coating, an unexpected smooth liquid film mostly composed of niobium suboxides (such as NbO2 and NbO), rather than pure Nb2O5, generated during ablation for 45 s. Mechanical erosion resulted from the molten SiO2, and the relatively low viscosity of the outer oxide layer owing to insufficiently high melting point of niobium suboxides were the key factors for the failure mechanism of NbC coating. While NbC–ZrC coating abated for 90 s has a 97.49 and 66.53% decrease of linear and mass ablation rate relative to NbC coating ablated for 45 s, since ZrO2 hindering the evaporation of SiO2 droplets, and more thermal-stable Nb–O–Zr liquid film endow (NbC–ZrC)/SiC/C/C composites with an outstanding anti-ablation property.  相似文献   

3.
This paper describes a preliminary investigation of a nanocomposite ceramic coating system, based on Al2O3/SiC. Feedstock Al2O3/SiC nanocomposite powder has been manufactured using sol-gel and conventional freeze-drying processing techniques and then low pressure plasma sprayed onto stainless steel substrates using a CoNiCrAlY bond coat. Coatings of a commercial Al2O3 powder have also been manufactured as a reference for phase transformations and microstructure. The different powder morphology and size distribution resulting from the different processing techniques and their effect on coating microstructure has been investigated. Phase analysis of the feedstock powders and of the as-sprayed coatings by X-ray diffractometry (XRD) and nuclear magnetic resonance (NMR) showed that the nano-scale SiC particles were retained in the composite coatings and that equilibrium α-Al2O3 transformed to metastable γ- and δ-Al2O3 phases during plasma spraying. Other minority phases in the sol-gel Al2O3/SiC nanocomposite powder such as silica and aluminosilicate were removed by the plasma-spraying process. Microstructure characterisation by scanning electron microscopy (SEM) of the as-sprayed surface, polished cross-section, and fracture surface of the coatings showed evidence of partially molten and unmolten particles incorporated into the predominantly lamella microstructure of the coating. The extent of feedstock particle melting and consequently the character of the coating microstructure were different in each coating because of the effects of particle morphology and particle size distribution on particle melting in the plasma.  相似文献   

4.
Al2O3-Y2O3-SiC composite coatings were prepared on depleted uranium by cathode plasma electrolytic deposition in Al(NO3)3, Y(NO3)3, SiC nanoparticles and anhydrous ethyl alcohol mixture. The resulting coating consisted of an inner barrier layer and an outer porous layer. The SiC nanoparticles were incorporated into the composite coating and decreased the coating porosity by filling the pores. The potentiodynamic polarization test and neutral salt spray test revealed that the corrosion resistance of depleted uranium was enhanced by the composite coating. Moreover, with increasing the content of SiC nanoparticles in the coating, the coating corrosion resistance was improved gradually.  相似文献   

5.
Semiconductor particles doped Al2O3 coatings were prepared by cathode plasma electrolytic deposition in Al(NO3)3 electrolyte dispersed with SiC micro- and nano-particles (average particle sizes of 0.5–1.7?µm and 40?nm respectively). The effects of the concentrations and particle sizes of the SiC on the microstructures and tribological performances of the composite coatings were studied. In comparison with the case of dispersing with SiC microparticles, the dispersion of SiC nanoparticles in the coatings was more uniform. When the concentration of SiC nanoparticles was 5?g/L, the surface roughness of the composite coating was reduced by 63%, compared with that of the unmodified coating. Friction results demonstrated that the addition of 5?g/L SiC nanoparticles reduced the friction coefficient from 0.60 to 0.38 and decreased the wear volume under dry friction. The current density and bath voltage were measured to analyze the effects of SiC particles on the deposition process. The results showed that the SiC particles could alter the electrical behavior of the coatings during the deposition process, weaken the bombardment of the plasma, and improve the structures of the coatings.  相似文献   

6.
《Ceramics International》2022,48(6):7885-7896
Al2O3 and honeycomb skeleton-Al2O3 composite coatings on Titanium alloy (Ti–6Al–4V) were prepared by atmospheric plasma spraying. A laser ablation experiment on as-sprayed coatings was performed. In this paper, the laser damage resistance, microstructure, phase composition of Al2O3 coatings were examined. 3D Dimensional Confocal Microscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive Spectrometry (EDS) characterized the laser damage morphology, microstructure, phase composition, and element analysis, respectively. The influence of the honeycomb skeleton on the laser ablation damage on as-sprayed coatings was investigated by a comparative analysis of the laser damage morphology with different laser ablation times and gas flow. The results show that the honeycomb skeleton raises thermal conductivity and thermal diffusivity. Moreover, a “tower”-like dendrite was generated during the laser irradiation of the composite coating. The honeycomb skeleton refined the structure, suppressed crack propagation, and reduced the influence of gas flow on cracks. Under the same experimental laser ablation parameters, the laser damage area of the honeycomb skeleton-Al2O3 composite coating was smaller than that of the Al2O3 coating. It was demonstrated that the laser damage resistance of the honeycomb skeleton-Al2O3 composite coating was superior to that of the Al2O3 coating.  相似文献   

7.
NbB2-NbC composite coatings were fabricated on the surface of TC4 by plasma spraying NbB2-NbC and Nb-B4C composite powders. The microstructure and properties of the as-prepared coatings were investigated, and the reaction mechanism of the Nb-B4C composite powder in the plasma jet and the formation mechanism of the NbB2-NbC coatings were revealed. During the plasma spraying process, NbB2-NbC composite powder underwent melting-depositing and no phase transformation occurred. The formation mechanism of the coating by plasma spraying Nb-B4C composite powder was solid phase diffusion-reaction-melting-deposition, and NbB2 and NbC were formed in situ by the solid phase diffusion reaction between Nb and B4C in the plasma jet. The coating obtained by reactive plasma spraying Nb-B4C composite powder has obvious lamellar structure, low porosity, high density, higher microhardness, good toughness, and better wear resistance compared with the coating prepared by NbB2-NbC composite powder, which is attributed to the exothermic reaction between Nb and B4C.  相似文献   

8.
Niobium pentaoxide (Nb2O5) thin films were deposited on etched aluminum foils by complexation–precipitation followed by heat treatment. Then the Al2O3–Nb2O5 (Al–Nb) composite oxide films were formed by anodizing to increase the capacitance of anodized aluminum foils which are used in aluminum electrolytic capacitors. The composition and structure of niobium deposition layer were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and the microstructures and dielectric properties of anodic oxide films were investigated by scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS) respectively. The results show that the niobium deposition layer after heat treatment existed in the form of crystalline Nb2O5. The aluminum foil with Nb2O5 coating can be anodized with higher efficiency and energy saving. Compared with that of normal anodized aluminum foils, the effective area of the anodized aluminum foils with Al–Nb composite oxide films had no apparent change. The specimens with Al–Nb composite oxide films anodized at 30 V exhibited about 20% higher specific capacitance than that of those with pure aluminum oxide films. It suggests that the method of complexation–precipitation is an effective way to increase the specific capacitance of anodized aluminum foils used in aluminum electrolytic capacitors.  相似文献   

9.
《Ceramics International》2022,48(7):9286-9296
Al2O3 coating and Al2O3/Ag (10%) composite coating were prepared on the surface of GH4169 superalloy by the atmospheric plasma spraying technology. And an in-situ synthesis method was applied to introduce the Ag particles into a part of Al2O3 coatings to obtain Al2O3/Ag(synthesis) composite coating. Then, the microstructure and mechanical properties of these three Al2O3-based coatings were systematically studied in this work. In order to reveal the lubrication characteristics of Ag, their friction tests were carried out at room temperature (RT), 400 °C, 600 °C and 800 °C, respectively. The results showed that both microstructure and mechanical properties of Al2O3/Ag(synthesis) composite coating were better than that of Al2O3/Ag (10%) composite coating because many pores and cracks produced during the direct spraying. Although the friction coefficients of two kinds of composite coatings were close to that of Al2O3 coatings at RT, their wear rates were both greatly decreased due to the introduction of Ag. In addition, the lubricating performance of Ag was not enough to reduce their friction coefficients when friction temperature is lower than 600 °C. However, the friction coefficients of these composite coatings were both reduced to about 0.3 at 800 °C . At this time, the Al2O3/Ag(synthesis) composite coating also exhibited a lower wear rate because of its dense microstructure and excellent mechanical properties.  相似文献   

10.
《Ceramics International》2021,47(21):30188-30193
The oxidation behaviours of a newly synthesized MAX phase composite mainly containing a multi-component 413 MAX phase with Ti, Nb and Ta equally and evenly distributed at M site were investigated at 1000–1400 °C in air. Results indicated that the multi-component MAX phase exhibited superior oxidation resistance compared with traditional monolithic 413 MAX phases such as Nb4AlC3 and Ta4AlC3. Dense and passivating Al2O3 layers that formed at the interfaces between the substrate and the oxidation scale is the origin of the high oxidation resistance. The presence of Cr–Al alloy phases is essential for the formation of protective Al2O3 scale.  相似文献   

11.
A comparative study of the corrosion properties of thermally sprayed ceramic coatings (Al2O3, Al2O3–TiO2 with different ratios, mullite, and ZrSiO4) and their sintered bulk ceramic counterparts was performed. The coatings were deposited on corrosion-resistant steel substrates using atmospheric plasma spraying (APS) and high velocity oxy-fuel (HVOF) spraying processes. The corrosion properties were investigated in 1 N solutions of NaOH and H2SO4 at 85 °C, respectively. The coating microstructures and phase compositions, as well as the corrosive environment were shown to have a strong effect on the corrosion resistance of the coatings. Al2O3–coatings were more sensitive to these factors than Al2O3–TiO2 coatings were.The corrosion resistance of the bulk ceramics was superior to that of the thermally sprayed coatings. This is mainly because the coatings exhibited specific microstructure and contained amorphous and/or metastable phases not appearing in the bulk ceramics.  相似文献   

12.
ABSTRACT

Al2O3–SiC composite powders were prepared from kyanite tailings mixed with 20% excess carbon coke via carbothermal reduction (CR) reaction. The optimised synthesis condition for synthesising Al2O3–SiC composite powders was at 1600°C for 6?h. The equilibrium relationship curves of the condensed phases were presented and the temperature dependence of the phase composition was also studied. The results show that irregular Al2O3 and SiC grains first formed at 1500°C, and the elements C, O, Al, and Si randomly distributed in the each crystal particles. The amount of Al2O3–SiC composites increased with the increasing synthesis temperature and reaction time. Finally, Al2O3–SiC composite bulk materials were further prepared by pressureless sintering using the synthesised Al2O3–SiC composite powders as raw materials, and their mechanical properties were investigated in detail. All these results indicate that the CR method can offer a niche application for the development of kyanite tailings.  相似文献   

13.
Nanostructured ceramic matrix composite coating was prepared in-situ by reactive plasma spraying micro-sized Al-Fe2O3 composite powders. The microstructure, toughness and Vickers hardness of these coatings were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and mechanical tests. The results indicated that the coating exhibited nanostructures which consisted of FeAl2O4, Al2O3, Fe (or Fe solid solution) and a little FeAl. The composite coating showed significantly higher toughness and wear resistance than the conventional Al2O3 coating.  相似文献   

14.
《Ceramics International》2017,43(6):5319-5328
Adding nano particles can significantly improve the mechanical properties and wear resistance of thermal sprayed Al2O3 coating. However, it still remains a challenge to uniformly incorporate nano particles into traditional coatings due to their bad dispersibility. In the present work, nanometer Al2O3 (n-Al2O3) powders modified by KH-560 silane coupling agent were introduced into micrometer Al2O3 (m-Al2O3) powders by ultrasonic dispersion to afford nano/micro composite feedstock, and then four resultant coatings (weight fraction of n-Al2O3: 0%, 3%, 5% and 10%) were fabricated by atmospheric plasma spraying. The features and constitutes of feedstock and as-sprayed coatings, as well as their porosity, bonding strength, microhardness and frictional behaviors were investigated in detail. Results show that the nano/micro composite feedstock with uniform microstructure can be better melted in the spraying process, thereby obtaining coatings with denser microstructure, higher hardness and bonding strength. Added n-Al2O3 has no obvious effect on the friction coefficient of composite coatings, whereas can improve their wear-resistant and reduce the worn degree of counterpart. The wear mechanism of traditional coating is brittle fracture and lamellar peeling, while that of composite coating with weight fraction of n-Al2O3 of 10% is adhesive wear.  相似文献   

15.
In this study, the effects of bond coat on the properties of Al2O3 and Al2O3–13 wt.% TiO2 coatings, which is plasma sprayed onto a commercial pure titanium substrate with and without Ni–5 wt.% Al (METCO 450 NS) as bond coating layer were investigated in terms of microhardness, bonding strength and surface roughness. Optical and scanning electron microscopy (SEM) examinations revealed that there is a uniform coating layer with no spalling and delamination. However, there is a little amount of porosity. The results indicated that the application of bond coat layer in the plasma spraying of Al2O3 and Al2O3–13 wt.% TiO2 on pure titanium substrate has increased the hardness and bonding strength of coatings. While the adhesive bonding is dominant without bond coat, the cohesive bonding is dominant with the application of the bond coating layer. It has been observed that percentage of cohesion strength was about three times higher than that of adhesion strength.  相似文献   

16.
Y3Al5O12 (YAG), Y2O3, and Al2O3 ceramic coatings were manufactured to investigate the plasma erosion properties. The X‐Ray Diffraction (XRD) analysis confirmed that YAG coating was synthesized successfully by Y2O3 and Al2O3 mixture suspension using the plasma spraying method. Meanwhile, metastable phases were found in Y2O3 and Al2O3 coatings due to the quenching in cooling process of melted droplets. The coating surface morphology and microstructure of cross sections were characterized by SEM. The results reveal that coatings are composed by ultrafine splats and exhibit dense lamellar structure. The plasma erosion properties were evaluated at different etching test power under Ar/CF4/O2 plasma gas. The experimental results clarify that both of YAG and Y2O3 coatings show the better plasma erosion resistance than Al2O3 coatings. The formation of fluorination layer surface prevents the coatings from further erosion with plasma gas. Moreover, the etching rate of coatings depended on the fluorination and removing rate of fluoride layer.  相似文献   

17.
To improve the emissivity of ZrB2/SiC coatings for serving in more serious environment, ZrB2/SiC coatings with varying contents of high emissivity Sm2O3 were fabricated using atmospheric plasma spraying. The microstructure, infrared radiative performance and anti-ablation behaviour of the modified coatings were investigated. The results showed that as the content of Sm2O3 increased, the density of the coatings increased because of the low melting point of Sm2O3. When the content of Sm2O3 was 10 vol%, the coating had the highest emissivity in the 2.5–5 μm band at 1000 °C, up to 0.85, because of the oxygen vacancies promoting additional electronic transitions. Due to the high emissivity, the surface temperature of the coating modified with 10 vol% Sm2O3 decreased by 300 °C, which led to little volatilisation of the sealing phase. Further, the mass ablation ratio of the above coating was 3.19 × 10?4 g/s, decreasing 31% compared to that of a ZrB2/SiC coating. The formed dense surface structure of the coatings showed considerable oxygen obstructive effects. These findings indicate that the modified coatings show considerable anti-ablation performance, which provides effective anti-ablation protection for the C/C composite substrate.  相似文献   

18.
《Ceramics International》2022,48(15):21258-21267
(Ti,Nb)3SiC2/60 vol%-Al2O3 composite ceramic samples with different Ti/Nb atomic ratios were prepared by hot-pressing sintering using Ti/Si/Al/TiC/NbC/Al2O3 powders as starting materials. X-ray diffraction analysis showed that the solid solubility of Nb is approximately 7.5 at%. Excessive NbC powder addition can lead to the generation of an impurity phase. Scanning transmission electron microscopy and X-ray photoelectron spectroscopy images reveal that most of the Nb-doped atoms aggregate at 2a-sites, as this configuration exhibits the lowest system energy. The optimized hardness, flexural strength and fracture toughness of (Ti,Nb)3SiC2/Al2O3 were determined to be 16.0 GPa, 672 MPa and 6.9 MPa m1/2, which corresponds to an increase of 15.9%, 18.7% and 25.4% respectively, compared with Ti3SiC2/Al2O3 composite ceramics. By means of first-principle calculations, the strengthening mechanism is derived from both intragranular improvement in (Ti,Nb)3SiC2 solid solutions and intergranular enhancement of (Ti,Nb)3SiC2/Al2O3 grains interfaces.  相似文献   

19.
Powder particle diameters currently used for spraying are generally between 5 and 100 μm with a preferred size range around 40–60 μm. Future trends in plasma spraying involve the use of fine or ultrafine powders and the reduction of the number of steps between raw material preparation and coating. The use of non-sintered spray dried ceramic aggregates as feedstock material for plasma spraying has accordingly been investigated. Al2O3 based coatings were prepared by this route of dried particle plasma spray (DPPS). The microstructure and crystallographic phases of these deposits were characterised using scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Given the intimate mixing of the starting oxides, reactions occur during spraying leading to the formation of spinel (MgAl2O4 and/or ZnAl2O4) and zinc aluminum oxide (Zn4Al22O37). The layered structure of the deposit is characteristic of conventional plasma-sprayed coatings but the features are smaller in size. Depending on the operating conditions (plasma characteristics and powder injection), two different melting modes of the particles were identified; the first leads to individual well-melted droplets that splash regularly even if generating some fingers and the second leads to aggregates that are well-melted on their outer parts and strengthened in their cores.  相似文献   

20.
The ultrafine-grained β-Sialon ceramics were fabricated by spark plasma sintering at different temperatures with inorganic Al2O3–Y2O3 and Ti–22Al–25Nb intermetallic powder as composite additives. The research showed that β-Sialon ceramics achieve two-stage sintering densification. Al2O3–Y2O3 inorganic additives promoted the synthesis and densification of β-Sialon ceramics at 1125–1215°C. Ti–22Al–25Nb intermetallic powder diffused Ti and Nb elements at 1240–1425°C, thereby improving the fracture toughness of β-Sialon ceramics. The maximum fracture toughness (∼9.69 MPa m1/2) under 19.6 N was obtained for β-Sialon ceramics sintered at 1600°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号