首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various machine components produced from titanium alloys used in various industries are subject to a combination of electrochemical and mechanical effects. The science of surface transformations resulting from the interaction of mechanical loading and chemical reactions that occur between elements of a tribosystem exposed to corrosive environments is described as tribocorrosion. This research focuses on the tribocorrosion behaviour of Ti6Al4V alloys after coated by using closed field unbalance magnetron sputtering (CFUBMS). The structural analyses of the coatings were performed using Raman spectroscopy and scanning electron microscopy (SEM). Tribocorrosion experiments were performed in a pin-on-disc tribotester under electrochemical polarisation in NaCl 1 wt.% solution. This study shows that the Ti-DLC coating is protecting the Ti6Al4V alloy and having good performance in corrosion and tribocorrosion conditions. The OCP values for Ti6Al4V substrate and Ti-DLC protective coatings during tribocorrosion tests were measured as −560 V and −330 V, respectively. These results showed that Ti-DLC protective coating on Ti6Al4V substrates increased the tribocorrosion resistance by acting as a barrier layer.  相似文献   

2.
The CrCN coatings have been prepared by multi-arc ion plating technology with different bias voltages on 316?L, TC4 and H65 substrates, respectively. The prepared CrCN coatings have been characterized by XRD, SEM, and EDS, respectively. The mechanical properties, electrochemical corrosion behavior, and tribological performance of prepared coatings were tested by microhardness tester, scratch tester, electrochemical workstation, and friction and wear tester, respectively. Results show that the CrCN coatings with bias voltage of ?50?V presented the finer grain size, denser structure, better comprehensive mechanical properties and friction, and better corrosion resistance than the CrCN coatings with a bias voltage of ?30?V. The coating on TC4 substrate show the lower hardness, the better adhesion, the better electrochemical properties and tribological properties than that on 316?L substrate. The coatings based on H65 Cu substrate presented the worst electrochemical and wear properties. The CrCN coating with a bias voltage of ?50?V on TC4 substrate is an optimal candidate in artificial seawater for tribocorrosion.  相似文献   

3.
Ceramic coatings often suffer from the formation and expansion of microcracks, which leads to a failure of the protective function. In this work, we observed self-healing of the microcracks in the TiSiN/Ag multilayer coating upon heating. This behavior can be attributed to diffusion of the Ag atoms to the cracks in the multilayer coating, while similar cracks in the TiSiN monolayer coating remain unchanged after the same treatment. Furthermore, the TiSiN/Ag coating with healed cracks possesses similar electrochemical corrosion and biofouling properties to the as-deposited one, suggesting that TiSiN/Ag is a promising system in marine engineering applications. The mechanism of self-healing was explained by kinetic simulations based on ab initio molecular dynamics and the diffusion activation energies of Ag in irregular ceramic structures have been calculated. The here adopted theoretical method also provides a new pathway for exploring new coating systems with a potential self-healing function.  相似文献   

4.
《Ceramics International》2017,43(9):7231-7236
In this work, silver and carbon co-coated SrLi2Ti6O14 is synthesized by using a solid-state assisted solution method, with glucose as carbon source and silver nitrate as Ag source. The structural and morphological properties of as-prepared samples are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), which confirm that C/Ag composite layer is uniformly coated on the surface of SrLi2Ti6O14. Electrochemical measurements like galvanostatic charge/discharge tests, rate performance, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis are also undertaken to evaluate and compare the lithium storage capability of SrLi2Ti6O14 before and after coating. According to the results, SrLi2Ti6O14@C/Ag presents enhanced electrochemical capability compared with bare material. It can be found that bare SrLi2Ti6O14 only delivers the reversible capacity of 140.32 mA h g−1 with capacity retention of 90.7% at 100 mA g−1 after 200 cycles. In contrast, SrLi2Ti6O14@C/Ag presents the reversible capacity of 151.20 mA h g−1 with only 6.7% capacity loss after 200 cycles. The improvement is owing to the increase of electronic conductivity and the decrease in the redox polarization after coating. In order to further investigate the structural stability of SrLi2Ti6O14@C/Ag, in-situ XRD was performed as well. All the results prove that the C/Ag co-coating has positive effect on the electrochemical performance of SrLi2Ti6O14.  相似文献   

5.
In this study, a laser cladding process was developed to deposit dense and well-adhered titanium single tracks on the surface of Ti6Al4V alloy with a compositional and microstructural gradient. CuO doped, freeze-dried anatase powder was specially formulated for this process. The addition of CuO resulted in stable melt pool with low viscosity, low surface tension and enhanced wettability with the substrate. Continuous titanium oxide single tracks were formed with a cross-sectional profile that was advantageous for coating deposition by means of multiple overlapping scan tracks. Rapid heating and cooling associated with laser cladding produced unique solidified microstructures with a compositional gradient. No structurally critical fractures were observed in the graded oxide layers, or at the coating/substrate interfaces. Furthermore, a transition zone of oxide/metal mixture was observed at the interface, increasing the effective bonding area between the coating and the substrate.  相似文献   

6.
TiAlSiN multicomponent coating, owing to its high hardness and excellent high temperature resistance, was widely used in the cutting field of difficult-to-cut materials such as titanium alloys. For machining titanium alloys, high temperature is easy to gather on the tool chips and deteriorate the cutting tools. Moreover, high temperature will also promote the microstructure evolution and make the wear mechanism more complex. In this paper, TiAlSiN coatings were deposited on cemented carbides and annealed at 400 °C, 600 °C and 800 °C respectively for 60 min in air, followed by reciprocating friction tests against Ti6Al4V counterparts. AFM, SEM, EDS and XPS were applied to investigate the microstructure evolution and tribological behavior of TiAlSiN coating after high temperature annealing. The results demonstrated that the oxidation resistance of TiN phase in TiAlSiN coating was worse than Si3N4 and AlN phases. These nitrides can be oxidized to TiO2, SiOx and AlOx under 600 °C, and the depth of oxide layer was increased with the rising annealing temperature, resulting in the coarsened microstructure. The wear mechanisms of as-deposited TiAlSiN coating were oxidation wear and adhesion wear. With the rising annealing temperature, abrasive wear was gradually enhanced. For the TiAlSiN coating annealed at 800 °C, abrasive wear became the dominant wear mechanism.  相似文献   

7.
Vitreous enamel coating is a promising candidate as a high temperature protective coating for titanium (Ti)-based alloys due to its high thermo-chemical stability, compatibility, and matching thermal expansion coefficient to the substrates. Vitreous enamel coating is economically attractive because of its low cost and easy handling. The oxidation behavior of Ti6Al4V (at 700°C) and Ti–48Al (at 800–900°C), with and without the vitreous enamel coating exposed to air, are investigated in this article. The results show that the vitreous enamel coating could markedly protect the substrate (Ti6Al4V and Ti48Al) from oxidation at elevated temperatures. In comparison, the TiAlCr coating might not provide long-term protection for the Ti6Al4V alloys due to the heavy interfacial interdiffusion at high temperatures, although a protective Al2O3 scale could form at the initial oxidation stage. The vitreous enamel coating remains intact, uniform, compact, and adhesive to the substrate, however, with undetectable interfacial reaction after oxidation. It is also worth noting that some new phases form in the coating during oxidation at 900°C, although the protectiveness of the coating seems to be unaffected.  相似文献   

8.
Electrodeposited anodic oxide coatings were produced on Ti–6Al–4V substrates using aqueous electrolytes containing dissolved calcium and phosphorus. Different coatings were produced by varying the time periods. The coatings contained TiO as the major phase and contained very small quantities of calcium and phosphorus. All the coatings were less than 200 nm thick. A point defect model is obeyed by all the coatings.  相似文献   

9.
《Ceramics International》2023,49(6):9239-9250
Zinc oxide coatings were electrodeposited on Ti6Al4V substrates from a nitrate bath with and without 1 wt% BG nanoparticles at ?1.2 and ?1.4 VAg/AgCl, where the former voltage created a spherical morphology, the latter developed a flower-like one. The spherical morphology was modified through the incorporation of BG nanoparticles, where surface roughness, wettability, and adhesion strength of the coating were enhanced. The coatings with spherical morphology also revealed complete barrier property after immersion in PBS solution. However, fully adverse effects were found for the coatings deposited at ?1.4 VAg/AgCl. This indicates that morphology is the most important factor determining the properties of ZnO and ZnO-BG coatings. The highest corrosion barrier performance was achieved for the ZnO-BG composite coating with spherical morphology. Although the composite coating with flower-like morphology did not provide complete barrier property at short immersion times, it earned that at longer times due to the plugging supported by the BG nanoparticles. The bioactivity tests in SBF at long times showed that the formation of Ca-P deposits on the surface of the composite coatings was noticeably improved.  相似文献   

10.
The corrosion properties of Ti–6Al–4V and laser surface melted (LSM) Ti–6Al–4V samples were investigated in 0.05 M H2SO4/0.05 M NaCl solution. Laser surface treatment was found to increase the corrosion potential and decrease the corrosion rates of the alloy. The current–potential profile of the LSM was found to be generally noisy below 0.5 V, indicating an unstable surface, which undergoes continuous dissolution and repassivation. However, above 0.5 V the LSM specimen exhibited higher corrosion current compared to the untreated alloy. Inductively coupled plasma (ICP) analysis of metals in solution was carried out after controlled potential electrolysis. Generally, the aluminium percentage was found to be the highest in solution compared to titanium and vanadium. The aluminium percentage in solution reached 94% compared to titanium and vanadium upon polarization in the passive region at 1.01 V. SEM showed that some local and shallow pitting to occur in both the untreated and LSM alloy. EDS results showed that aluminium composition of the electrolysed alloy surface is lower than the original material composition, and decreased from 6% in the original alloy to 0.18% after two hours of electrolysis of the LSM specimen.  相似文献   

11.
在非水溶液体系中电泳沉积Ti6Al4V/BG/HA梯度涂层   总被引:2,自引:4,他引:2  
本工作的目的是探索制备钛合金表面生物活性梯度涂层的新方法 ,提高涂层的结合强度及稳定性 .通过诱导羟基磷灰石 (HA)在生物玻璃 (BG)颗粒表面的结晶 ,改变了生物玻璃表面的带电特性 ;采用电泳沉积 (EPD)法 ,在非水溶液体系中实现了BG和HA在阴极Ti6Al4V基体上的共沉积 ,经烧结获得了生物活性梯度陶瓷涂层 ,得到了一种制备生物活性梯度陶瓷涂层的新工艺 .用XRD对涂层的相组成进行了定性分析 ,结果表明涂层由HA ,榍石和玻璃组成 ;采用粘结拉伸法测定的涂层与基体结合强度大于 18MPa,用SEM观察涂层表面及断面的形貌 ,可见涂层表面较为平整 ,没有明显的裂纹 ;涂层与基体结合紧密 ,且存在一明显的界面梯度区域 .  相似文献   

12.
To disclose the impact of SF6 gaseous medium on Ag/Ti3SiC2 contact materials, arc discharges on the Ag/Ti3SiC2 cathodes were performed 100 times in SF6 gas at 10 kV. After 1, 50, and 100 times of arc discharges, the morphologies of arc-eroded surfaces were characterized. The changes in breakdown strength with the number of tests were recorded. After 100 times of arc erosion, the composition of the surface was characterized, and the morphologies and compositions of the cross section were measured. In the process of multiple arc breakdowns, the arc erosion position randomly changes. In the later stage of tests, the breakdown strength of Ag/Ti3SiC2 increased. The protrusion on the arc-eroded surface is the ignition point for the arc, the down of protrusion height and the smooth of protrusion tip were observed after multiple arc discharges, which may result in the increase in breakdown strength. After multiple arc erosion tests, Ag2S was detected on the surface by XPS, and part of silicon elements were dissociated outward from Ti3SiC2. The composition change is inferred to be one of the reasons for the rise of breakdown strength.  相似文献   

13.
《Ceramics International》2016,42(6):6874-6882
Due to the characteristics of an electronic insulator, Na2Li2Ti6O14 always suffers from low electronic conductivity as anode material for lithium storage. Via Ag coating, Na2Li2Ti6O14@Ag is fabricated, which has higher electronic conductivity than bare Na2Li2Ti6O14. Enhancing the Ag coating content from 0.0 to 10.0 wt%, the surface of Na2Li2Ti6O14 is gradually deposited by Ag nanoparticles. At 6.0 wt%, a continuous Ag conductive layer is formed on Na2Li2Ti6O14. While, particle growth and aggregation take place when the Ag coating content reaches 10.0 wt%. As a result, Na2Li2Ti6O14@6.0 wt% Ag displays better cycle and rate properties than other samples. It can deliver a lithium storage capacity of 131.4 mAh g−1 at 100 mA g−1, 124.9 mAh g−1 at 150 mA g−1, 119.1 mAh g−1 at 200 mA g−1, 115.8 mAh g−1 at 250 mA g−1, 111.9 mAh g−1 at 300 mA g−1 and 109.4 mAh g−1 at 350 mA g−1, respectively.  相似文献   

14.
Using an electrochemical process, needle-like hydroxyapatite crystals with Ca/P ratio of 1.67 were synthesized on Ti6Al4V without the formation of any precursor. In vitro dissolution/precipitation process was investigated by immersion of the coated substrate into Hank??s solution up to 14?days. Physical and chemical characterizations were performed by scanning electron microscope coupled with energy dispersive X-ray spectroscopy and by X-ray diffraction. In particular, through a sequence of reactions including dissolution, precipitation, and ions exchange during immersion tests, a precipitated bone-like apatite coating homogenous and less porous was formed. Further, the corrosion behavior of the untreated and HA-coated specimens in simulated body fluid was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy. The results showed that the corrosion rates of the samples with HA layer before and after immersion tests were 72 and 80?% lower than that of the bare titanium alloy. At last, the adhesion of the HA layer was determined through the use of scratch tests. A particular tribological behavior and a strong link to the substrate were revealed.  相似文献   

15.
A simple chemical bath method was used to deposit hydroxyapatite (HA) coatings on Al2O3, Ti, and Ti6Al4V substrates at ambient pressure by heating to 65–95 °C in an aqueous solution prepared with Ca(NO3)2·4H2O, KH2PO4, KOH, and EDTA. The deposition behavior, morphology, thickness, and phase of the coatings were investigated using scanning electron microscopy and X-ray diffractometry. The bonding strength of the coatings was measured using an epoxy resin method. The HA coatings deposited on the three kinds of substrates were fairly dense and uniform and exhibited good crystallinity without any additional heat treatment. A coating thickness of 1–1.8 μm was obtained for the samples coated once. By repeating the coating process three times, the thickness could be increased to 4.5 μm on the Al2O3 substrate. The bonding strength of these coatings was 18 MPa.  相似文献   

16.
Hydroxyapatite is a bioactive material that is the main inorganic constituent of human hard tissue (Ca/P ratio of 1.67) whose coatings provide requisite surface bioactivity to the bone implants. In the current work, the characteristics of nanocrystalline hydroxyapatite (HA) coatings, electrophoretically deposited on Ti6Al4V substrate, have been investigated. To enhance the coating’s compatibility, a 0.75 μm thick TiO2 layer was thermally grown as a diffusion barrier prior to electrophoretic deposition of HA. Subsequently, HA was electrophoretically deposited (EPD) at different deposition voltages (100–250 V) while keeping the deposition time as 10 s. Both anodic oxidation during EPD for 10 s and thermal oxidation during sintering at 1000°C for 2 h resulted in the growth of a TiO2 layer thickness of more than 25 μm. Enhancement of voltage also has shown significant influence on the mechanism of the evolution of biphasic microstructures, attributed to the simultaneous growth of TiO2 and HA phases. Optimized distribution of HA and TiO2 phases was evidenced at 200 V, with explicit HA retention as observed via transmission electron microscopy. An empirical relationship is developed to relate the voltage with the suppression of cracking in the deposited coatings.  相似文献   

17.
《Ceramics International》2021,47(19):27430-27440
Steel materials employed in severe conditions including strong corrosion, high load and multi-factor coupling damages can easily cause incredible degradation until failure, and the protective CrN-based coatings should be one of promising candidates to relieve those damages for the steel equipment or components. In present paper, the monolayer CrAlN and multilayer Cr/CrAlN coatings were successfully deposited on steel substrates by multi-arc ion technology, and their microstructure, mechanical, tribological and corrosion performances were systematically investigated. The results show that the special multilayer Cr/CrAlN coating could possess much better load-bearing capacity and wear resistance than that of monolayer CrAlN coating, which was due to the facts that the multilayer architecture can effectively release the internal stress and inhibit the expansion of defects. Particularly, the multilayer interfaces could effectively prevent the aggressive medium in seawater infiltrating into the inside of coating, and thus the multilayer Cr/CrAlN coating could have higher corrosion resistance compared to monolayer CrAlN coating. As a result, this multilayer Cr/CrAlN coating could achieve excellent combined performances, indicating that it has greatly potential application as protective coating in seawater.  相似文献   

18.
To improve the wear resistance of titanium alloy, in this work, TiC/TiB composite bioinert ceramic coatings were synthesized in-situ via laser cladding using Ti and B4C mixed powders as precursor materials. And to decrease the impact of the excessive residual tensile stress generated by the uneven temperature distribution on the performance of coatings, the coatings were then subsequently heated for 3 h at different temperatures (400 °C, 600 °C, and 800 °C) and then air cooled. The effects of heat treatment on the microstructure, residual stress, micro-hardness, fracture toughness, and wear resistance of the coatings were investigated. The results showed that phase compositions and microstructure of the heat-treated coatings were virtually identical to that of the untreated coatings; however, the precipitation of acicular TiB enhanced mechanical properties of the heat-treated coatings. In addition, the average residual tensile stress values of the coatings decreased as the heat treatment temperature increased, which improved fracture toughness of the coatings from 3.95 to 4.68 MPa m1/2. Moreover, wear resistance of the coatings was greatly enhanced by heat treatment; as the wear volume of the heat-treated coatings decreased by 50% at 800 °C compared with that of the untreated coatings. Lastly, the coatings showed good biocompatibility after being evaluated in vitro, and therefore had broad application prospects in the field of orthopedic implants.  相似文献   

19.
《Ceramics International》2016,42(16):18204-18214
Medical-grade alloys, such as Ti-6Al-4V, have been used for fixation of fractured bone and for the total replacement of defective bone. Their bioactivity could be improved by applying a bone-like apatite layer onto their surfaces. This, in turn, enhances their integration with the surrounding tissues upon implantation. In addition, the presence of a bioactive bone-like coating minimizes the likelihood of corrosion. Various methods are known for the formation of apatite coating onto Ti-6Al-4V, among which sputtering has shown its promise as a simple direct method. In the current work, a sputtering technique was used to develop a 300 nm-thick bone-like apatite layer onto Ti-6Al-4V. Structural composition, integrity and morphology of the as-coated and thermally treated coatings were investigated. Coated substrates were further evaluated after soaking them in a simulated body fluid (SBF) for up to 14 days. Results showed the formation of an amorphous apatite layer onto the alloy, that was further shown to partially crystallize upon heat treatment. As a result of SBF treatment, the apatite layer was found to remodel through a dissolution-precipitation mechanism due to its amorphous and non-stoichiometric nature, forming a smooth layer with better homogeneity and decreased surface roughness. Electrochemical analysis of the coated alloys showed the enhanced corrosion protection of the alloy surfaces by coating them with apatite. In addition, pre-grinding of the alloy surfaces before the formation of the coating was also found to improve the corrosion inhibition of the alloy surfaces in aqueous media.  相似文献   

20.
《Ceramics International》2017,43(18):16600-16610
Carbon/carbon (C/C) composite and Ti6Al4V alloy (wt%) were successfully brazed with graphene nanosheets strengthened AgCuTi filler (AgCuTiG). Graphene nanosheets (GNSs) with low CTE and high strength were dispersed into AgCuTi filler by ball milling. The interfacial microstructure was systematically characterized by varieties of analytical means including transmission electron microscopy (TEM). Results show that typical interfacial microstructure of the joint brazed at 880 °C for 10 min is a layer structure consisting of (Ti6Al4V/diffusion layer/Ti2Cu + TiCu + Ti3Cu4 + TiCu4/GNSs + TiCu + TiC + Ag(s,s) + Cu(s,s)/TiC/C/C composite). The interfacial microstructure and mechanical properties of brazed joints changed significantly as temperature increased. High temperature promoted the growth of TiCu and TiC phases, which were attached to GNSs. Meanwhile, the diffusion layer and primary reaction layers thickened as temperature increased, while the thickness of brazing seam decreased. The maximum shear strength of 30.2 MPa was obtained for the joint brazed at 900 °C for 10 min. GNSs decreased the thickness of brittle reaction layers and promoted the formation of TiCu and TiC phases in brazing seam, which caused the strengthening effect and decreased the CTE mismatch of brazed joints. The fracture modes are also discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号