首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(8):11056-11063
Ce2[Zr1?x(Ca1/3Sb2/3)x]3(MoO4)9 (CZ1?x(CS)xM) (x = 0.02–0.10) ceramics were prepared by the conventional solid-state reaction method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips–Van Vechten–Levine (P–V–L) theory. Phase composition and microstructures were evaluated by scanning electron microscopy and X-ray diffraction patterns. Lattice parameters were obtained by Rietveld refinements based on XRD data. Excellent properties for Ce2[Zr0.96(Ca1/3Sb2/3)0.04]3(MoO4)9 ceramic sintered at 775 °C: εr = 10.68, Q×f = 85,336 GHz and τf = ?7.58 ppm/°C were achieved.  相似文献   

2.
Novel K2–2xAg2xMg2(MoO4)3 (x = 0–0.09) ceramics were synthesized by conventional solid-state sintering method. Based on the X-ray diffraction (XRD) patterns, all samples were identified to belong to an orthorhombic structure with a space group of P212121(19). The pure phase K2Mg2(MoO4)3 specimen when sintered at 590 °C revealed the favorable microwave dielectric properties: εr of 6.91, Q×f of 21,900 GHz and τf of ?164 ppm/°C. The substitution of Ag+ for K+ in K2–2xAg2xMg2(MoO4)3 (x = 0.01–0.09) ceramics led to the more stable structure and dramatically enhanced the Q×f to a value of 54,900 GHz at 500 °C. The microwave dielectric properties were related to the relative density, microstructure, ionic polarization, lattice energy, packing fraction, and bond valence of the ceramics. It was suggested that for ultra-low temperature co-fired ceramic (ULTCC) applications, K1.86Ag0.14Mg2(MoO4)3 ceramic could be sintered at 500 °C, which revealed an excellent combination of microwave dielectric properties (εr =7.34, Q×f =54,900 GHz and τf =–156 ppm/°C) and good chemical compatibility with aluminum electrodes.  相似文献   

3.
《Ceramics International》2023,49(8):12633-12642
In this study, Ce2 [Zr1−x (Cr0.5Ta0.5)x]3(MoO4)9 (x = 0.02–0.10) ceramics were synthesized using the solid-state reaction technique, and the crystalline parameters, sintering behaviors, chemical bond characteristics, infrared reflection spectrum, and dielectric response at microwave and terahertz frequency were examined. X-ray diffraction results demonstrated the crystallization of all ceramics in the trigonal structure (R-3c space group), and additional peaks were not detected. The densification point of ceramic was 875 °C. The addition of (Cr0.5Ta0.5)4+ significantly reduced the dielectric loss in the host ceramic. For Ce2 [Zr0.96(Cr0.5Ta0.5)0.04]3(MoO4)9, outstanding microwave properties of εr = 10.66, Qf = 79,436 GHz, and τf = −19.07 ppm/°C were obtained at 875 °C. The chemical bond characteristics were also parameterized to explore the relationship between Zr(CrTa)–O and microwave properties. Infrared spectral results further indicate that phonon vibrations lower than 400 cm−1 contribute to 80% of the polarization. In our comparison between the infrared spectrum and terahertz time-domain spectrum, we found that the permittivity extracted by the latter is closer to the observed value.  相似文献   

4.
Using a conventional solid‐state reaction Ca5A4(VO4)6 (A2+ = Mg, Zn) ceramics were prepared and their microwave dielectric properties were investigated for the first time. X‐ray diffraction revealed the formation of pure‐phase ceramics with a cubic garnet structure for both samples. Two promising ceramics Ca5Zn4(VO4)6 and Ca5Mg4(VO4)6 sintered at 725°C and 800°C were found to possess good microwave dielectric properties: εr = 11.7 and 9.2, Q × f = 49 400 GHz (at 9.7 GHz) and 53 300 GHz (at 10.6 GHz), and τf = ?83 and ?50 ppm/°C, respectively.  相似文献   

5.
Microwave dielectric ceramic materials based on cerium [CeO2–0.5AO–0.5TiO2 (A = Mg, Zn, Ca, Mn, Co, Ni, W)] have been prepared by a conventional solid state ceramic route. The crystal structure was studied by X-ray diffraction, microstructure by scanning electron microscopy (SEM) techniques and the phase composition was studied using energy dispersive X-ray analysis (EDXA). The sintered ceramics had a relative dielectric constant (ɛr) in the range 17–65 and quality factor Quxf up to 50,000 GHz and a temperature variation of resonant frequency (τf) ranging from a negative value (−62 ppm/°C) to a high positive value (+399 ppm/°C). The majority of the synthesized ceramics were of a two phase composite consisting of a fluorite CeO2 and perovskite ATiO3 phase. The microwave dielectric properties were further tailored by adding various amounts of dopants of different valencies to the calcined powder. This made it possible to either tune τf to zero or improved the quality factor further.  相似文献   

6.
This study investigated the effects of the addition of Nb2O5 and sintering temperature on the properties of Bi2Mo2O9 ceramics. The ceramics were sintered in air at temperatures ranging from 620°C to 680°C. The addition of small amounts of Nb2O5 as a dopant significantly affected the crystalline phase and the microwave dielectric properties of the Bi2Mo2O9 ceramics. The secondary phase, γ‐Bi2MoO6, was observed when Nb2O5 was added. However, unlike the Bi2Mo2O9 ceramic without Nb2O5 sintered above 645°C, the ceramics with 3 mol% Nb2O5 contained no γ‐Bi2MoO6 when sintered at 660°C. The × f value and τf of the Bi2Mo2O9 ceramics were improved by Nb2O5 doping. The Bi2Mo2O9 ceramics doped with 2 mol% Nb2O5 exhibited the best microwave dielectric properties, with a permittivity of 36.5, a × f value (f = resonant frequency, = 1/dielectric loss at f) of 14100 GHz and τf of +5.5 ppm/°C after sintering at 620°C.  相似文献   

7.
0.9(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–0.1(Ca0.8Sr0.2)TiO3 (MZTS–CST) ceramics were prepared by a conventional solid‐state route. The MZTS–CST ceramics sintered at 1325°C exhibited εr = 18.2, Q × f = 49 120 GHz (at 8.1 GHz), and τf = 15 ppm/°C. The effects of LiF–Fe2O3–V2O5 (LFV) addition on the sinterability, phase composition, microstructure, and microwave dielectric properties of MZTS–CST were investigated. Eutectic liquid phases 0.12CaF2/0.28MgF2/0.6LiF and MgV2O6 were developed, which lowered the sintering temperature of MZTS–CST ceramics from 1325°C to 950°C. X‐ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS) analysis revealed that MZTS and CST coexisted in the sintered ceramics. Secondary phase Ca5Mg4(VO4)6 as well as residual liquid phase affected the microwave dielectric properties of MZTS–CST composite ceramics. Typically, the MZTS–CST–5.3LFV composite ceramics sintered at 950°C showed excellent microwave dielectric properties: εr = 16.3, Q × f = 30 790 GHz (at 8.3 GHz), and τf = ?10 ppm/°C.  相似文献   

8.
Na2B4O7·10H2O (borax) doped Sr3(VO4)2 ceramics for ULTCC applications were synthesized by the solid-state reaction. The influence of borax addition on the sintering characteristic, microstructure, and microwave dielectric properties of Sr3(VO4)2 ceramics was investigated in detail. The result indicated that borax was an effective sintering aid for the Sr3(VO4)2 system and a suitable amount of borax dramatically reduced the sintering temperature of Sr3(VO4)2 ceramics from 1000 to 675 °C. Meanwhile, borax addition prevented the Q × f value from getting degenerated and improved the τf value of Sr3(VO4)2 ceramics in the case of ultra-lower sintering temperatures. Novel Sr3(VO4)2 + 1 wt% borax ceramic sintered at 675 °C with optimum properties of Q × f = 19,200 GHz, εr = 15.9, and τf = 10.9 ppm/°C was achieved in this study.  相似文献   

9.
《Ceramics International》2022,48(6):7441-7447
Ce2[Zr1-x(Zn1/3Nb2/3)x]3(MoO4)9 (CZ1-x(ZN)xM) (x = 0.02–0.08) compounds were successfully prepared to scientifically examine the effect of (Zn1/3Nb2/3)4+ doping on phase composition, microstructures, and properties. The XRD results showed that all compounds formed a pure phase with the space group of R-3c. SEM results indicated that all compounds were compact at 675 °C, and the lattice parameters and average grain size decreased with doping. Performance analysis illustrated that εr was closely related to the polarizability, and Q?f was affected by the lattice energy of the Mo–O bond. The τf was maintained at an excellent level. Far-infrared analysis indicated that the major dielectric contribution to CZ1-x(ZN)xM ceramics was related to the absorption of phonon oscillation. The optimum properties (εr = 10.72, Q?f = 59,381 GHz, τf = ?11.48 ppm/°C) were obtained when x = 0.04.  相似文献   

10.
A series of Ce2(Zr1?xSnx)3(MoO4)9 (0.02 ≤ x ≤ 0.1) (CZ1?xSxM) ceramics were synthesized to investigate the effect of Sn4+ doping on the crystal structure, chemical bond parameters, and dielectric properties of Ce2Zr3(MoO4)9 ceramics. X-ray diffraction patterns illustrated the formation of the single-phase trigonal system solid solution in all samples. Rietveld refinement result showed that the lattice volume decreased linearly, which can be explained by the fact that the effective radius of Sn ion is smaller than that of Zr ion. As the Sn content increased, scanning electron microscope images showed that the CZ1?xSxM ceramics transformed from bar-like grains to disk-like grains and the grain size declined gradually. The structure–property correlation was estimated by using P–V-L theory; the descending εr was mainly consistent with the reduced polarizability and total bond ionicity. The Q × f was associated with the lattice energy of the Ce–O1 bond. The change of τf value was mainly attributed to the bond energy (EMo1O1 and EMo1O4) and the coefficients of thermal expansion (αMo1O1 and αMo1O4). Infrared analysis indicated that the dielectric properties of the CZ1?xSxM ceramics were primarily ascribed to the absorption of phonon oscillation. Notably, when x = 0.08, outstanding microwave dielectric properties could be achieved, namely, εr = 10.22, Q × f = 72,390 GHz, τf = ?7.54 ppm/°C.  相似文献   

11.
ALn4(MoO4)7 (A = Ba, Sr, Ca, Ln = La, Pr, Nd, Sm) ceramics are prepared by solid state ceramic route and the structural properties have been studied using powder X-ray diffraction and laser Raman spectroscopy. All the ceramics under study are phase pure except BaLn4(MoO4)7 (Ln = Pr, Nd, Sm). Scanning electron micrographs of the sintered ceramics show closely packed microstructure with phase homogeneity. BaLa4(MoO4)7 ceramic has a maximum density of 4.5 g/cm3 at 710°C together with ԑr = 11.8, Qu x f = 39 300 GHz, and τf = −68 ppm/oC. SrLa4(MoO4)7 ceramic exhibited a maximum density of 4.4 g/cm3, ԑr = 11.7, Qu x f = 44 200 GHz, and τf = −83 ppm/°C at 740°C whereas CaLa4(MoO4)7 ceramic possess a maximum density of 4.2 g/cm3, ԑr = 11.4, Qu x f = 30 200 GHz and τf = −90 ppm/oC at 750°C at microwave frequencies. The chemical compatibility of the BaLa4(MoO4)7, SrLa4(MoO4)7 and CaLa4(MoO4)7 ceramics with silver electrode have been studied using powder X-ray diffraction of the co-fired samples and is further examined with energy dispersive X-ray spectroscopy.  相似文献   

12.
《Ceramics International》2023,49(13):21777-21787
Ce2[Zr1-xMx]3(MoO4)9 (M = Mn1/3Nb2/3, Mn1/3Ta2/3; x = 0.02, 0.04, 0.06, 0.08 and 0.10) (abbreviated as CZ1-xNx and CZ1-xTx) ceramics were prepared through the solid-state reaction method. Effects of (Mn1/3Nb2/3)4+ and (Mn1/3Ta2/3)4+ ions on the sintering characteristics, crystal structures, microwave dielectric properties and infrared vibrational modes were studied in detail. X-ray diffraction (XRD) results reveal the formation of solid solutions for all components. Based on the chemical bond theory and Rietveld refinement, intrinsic structure parameters including the polarizability (P), the packing fraction (P.F.) and the octahedral distortion (Δocta.), and bond parameters including the lattice energy (U), bond energy (E) and thermal expansion coefficient (α) were calculated. Interestingly, the Ce–O bond plays a major role in the bond ionicity (fi), while Mo–O bond dominates the contributions in the lattice energy (U), bond energy (E) and thermal expansion coefficient (α). In addition, these parameters are used to explain the variations of the microwave dielectric properties of ceramics either changing the doping contents or replacing different ions at x = 0.06. Furthermore, far infrared (FIR) spectra uncover that the phonon modes provide the major polarization contribution of 68.59% in the CZ0.9T0.1 ceramic, implying that the main contribution to εr stems from the ionic polarization instead of the electronic polarization. Typically, the optimum microwave dielectric properties are achieved for the CZ0.9N0.1 and CZ0.9T0.1 ceramics with εr = 10.76, Q × f = 85,893 GHz (at 9.52 GHz), τf = −14.83 ppm °C−1 and εr = 10.72, Q × f = 87,355 GHz (at 9.81 GHz) and τf = −8.68 ppm °C−1, respectively. Notably, the CZ0.9T0.1 ceramic has a markedly increased Q × f while maintaining a good τf = −8.68 ppm °C−1 and a low sintering temperature of 700 °C.  相似文献   

13.
The Mg3(VO4)2xBa3(VO4)2 ceramics have been investigated to obtain a low-temperature co-fired ceramic (LTCC). The highest quality factor (Qf) of approximately 114,000 GHz was obtained when the ceramic with x = 0.2 was sintered at 950 °C for 5 h in air. The temperature coefficient of resonant frequency (τf) of the ceramics sintered at 1025 °C varied from −90 to 60 ppm/°C as the amount of xBa3(VO4)2 increased, and was a near zero value in the sample obtained at x = 0.5 where the dielectric constant (ɛr) and the Qf values were approximately 12 and 55,000 GHz, respectively. In order to reduce the sintering temperatures of Mg3(VO4)2xBa3(VO4)2 ceramics, the effects of Li2CO3 addition as a sintering aid on the microwave dielectric properties of Mg3(VO4)2–0.5Ba3(VO4)2 ceramics were also characterized in this study. The Li2CO3 addition was effective in reducing the sintering temperature without detrimental effects on the Qf values of the ceramics. One result: the microwave dielectric properties of Mg3(VO4)2–0.5Ba3(VO4)2 with 0.0625 wt%-doped Li2CO3 ceramic, which was sintered at 950 °C for 5 h in air, has a ɛr value of 13, a Qf value of 74,000 GHz, and a τf value of −6 ppm/°C.  相似文献   

14.
《Ceramics International》2023,49(20):32979-32988
Molybdenum oxide-based ceramics have attracted intense interest due to ultra-low sintering temperatures. However, low quality factors (Q × f) hinder their practical applications. Although Q × f can be improved by ions doping, the sintering temperature is greatly increased. Accordingly, it is still a challenge to obtain high Q × f ceramics sintered at ultra-low temperatures (<660 °C). Herein, (Bi0.5Ta0.5)4+ ions are utilized to tackle this issue in the Ce2Zr3(MoO4)9 ceramic as a prototype. Density and scanning electron microscope (SEM) results uncover good sintering states, and X-ray diffraction (XRD) results reveal the formation of solid solutions. Interestingly, the Ce-O bonds exhibit a dominant contribution to the bond ionicity (fi), while Mo-O bonds play an important role in the lattice energy (U), the bond energy (E) and the thermal expansion coefficient (α). The remarkable increase of Q × f can be interpreted by the enhancement of the packing fraction and the mean U of Mo-O bonds. Moreover, the variations of the dielectric constant (εr) and the temperature coefficient of the resonance frequency (τf) can be explained by the variations of the intrinsic parameters. More interestingly, a negative correlation between Q × f and τf is first found. Typically, the CZ0.98B0.02 ceramic sintered at 650 °C exhibits optimum microwave dielectric properties: εr = 9.92, Q × f = 110,670 GHz, and τf = −19.20 ppm °C−1. Notably, Q × f of the Ce2Zr2.94Bi0.03Ta0.03Mo9O36 (CZ0.98B0.02) ceramic is about 6 times larger than that of the matrix while retaining a low sintering temperature of 650 °C and a low εr of 9.92, making it a promising candidate for ultra-low temperature cofired ceramics (ULTCC) applications.  相似文献   

15.
A series of low-temperature firing ceramics with scheelite structure, [Ca0.55(Sm1-xBix)0.3]MoO4 (x = 0.2–0.95), were prepared via solid-state reaction. The sintering temperature ranges from 660 to 760°C. A standard tetragonal scheelite phase was formed without secondary phase. When the x value was 0.95, the temperature coefficient of resonant frequency (τf) moved to a near zero value (−2.1 ppm/°C) with a dielectric constant 13.7 and the quality factor (Qf) of 33 200 GHz. The Raman spectra shows that the more vibration modes appeared with x value, which is due to the increasing of Bi concentration and results in increase in permittivities and decrease in Qf values. The classical harmonic oscillator model is used in the infrared spectra and extrapolate to the microwave range. The [Ca0.55(Sm1-xBix)0.3]MoO4 ceramics show high-performance microwave dielectric properties at low-sintering temperature.  相似文献   

16.
《Ceramics International》2022,48(11):15282-15292
The Mo-based glass-free spinel-type structure of the (Na1-xKx)2MoO4 (x = 0.0, 0.1, and 0.2) ceramic series was prepared using the traditional solid-state method at the low sintering temperature (<650 °C). The microwave dielectric properties of the (Na1-xKx)2MoO4 series were determined in terms of phase compositions, crystal structure (via XRD), and microstructure analysis (via FE-SEM and EDS). The results revealed that the double-phase (cubic and orthorhombic) formation plays a significant role in the entire (Na1-xKx)2MoO4 series. It exhibits excellent dielectric properties: dielectric constant εr = 4 (1 GHz)/3.77 (15 GHz), tangent loss tan δ = 8.3 × 10?2 (1 GHz)/7 × 10?3 (15 GHz; Q × f = 2143 GHz), temperature coefficient of frequency (TCF) τf = ?6.45 ppm/°C, and room temperature thermal conductivity (κ) = 1.76 W/(m.K) for x = 0.1 at a sintering temperature of 575 °C. These make the (Na1-xKx)2MoO4 ceramic series a potential candidate for low-temperature co-fired ceramic (LTCC) substrate applications (as used in antennas) for high-speed data communications.  相似文献   

17.
Dense (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 ceramics were synthesized via solid-state reaction. The crystal structure and microwave dielectric properties of the ceramics were systematically investigated. Rietveld refinement revealed that when x ≤ 0.2, the ceramics had a rhombohedral structure with an R-3c space group. When x ≥ 0.5, the ceramics had an orthorhombic structure with a Pbnm space group. Selected area electron diffraction and Raman spectroscopy analyses proved that the microwave dielectric ceramics had a B-site order, which accounted for the great improvement in microwave dielectric properties. The content of oxygen vacancies was identified through X-ray photoelectron spectroscopy, and the change rule of Q × f was closely related to oxygen vacancy content. The perturbation of A-site cations had an important influence on dielectric constant. Specifically, with the increase in Ti4+ content, the perturbation effect of the A-site cations was enhanced and dielectric constant increased. When x = 0.65, the temperature coefficient of resonant frequency of the (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 microwave dielectric ceramics was near zero. The optimal microwave dielectric properties of 0.35LaAl0.9(Mg0.5Ti0.5)0.1O3–0.65CaTiO3 were εr = 44.6, Q × f = 32,057 GHz, and τf = +2 ppm/°C.  相似文献   

18.
《Ceramics International》2022,48(24):36900-36907
This study synthesized two novel middle-εr Ln3NbO7 (Ln = Nd, Sm; named NNO and SNO) microwave dielectric ceramics through the classic solid-state process. The results of XRD and Rietveld refinement show that NNO and SNO ceramics formed pure phases with the space group Cmcm (63) and C2221 (20), respectively. The properties of Ln-O and Nb–O bonds of NNO and SNO ceramics were calculated based on the P–V–L theory. The Nb–O bonds positively affect the crystal structure stability of the two ceramics. The optimum microwave dielectric properties were obtained (NNO: εr = 31.61, Q·f = 6,615 GHz (at 6.10 GHz), and τf = ?455.70 ppm/°C; SNO: εr = 34.55, Q·f = 11,625 GHz (at 5.77 GHz) and τf = 72.59 ppm/°C) when the samples sintered at 1550 °C. Notably, SNO ceramic shows a low dielectric loss and medium dielectric constant, and the opposite τf of NNO and SNO ceramics provide the possibility to fabricate microwave dielectric devices with good temperature stability.  相似文献   

19.
The effects of LiF addition on the sinterability and microwave dielectric properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4 (MZTS) ceramics were investigated. A small amount of LiF addition can effectively lower the sintering temperature of MZTS from 1325 °C to 1150 °C due to the liquid phase effect and induce no apparent degradation of the microwave dielectric properties. With increasing LiF content, the apparent density and dielectric constant decreased gradually, the quality factor increased firstly and then decreased. In particular, MZTS–3.0 wt% LiF ceramics sintered at 1150 °C for 5 h exhibited good microwave dielectric properties of ?r = 13.05, Q · f = 119,310 GHz (at 10 GHz) and τf = ?59.2 ppm/°C.  相似文献   

20.
《Ceramics International》2022,48(18):26217-26225
Sr2-2xCa2xCeO4 (x = 0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8) ceramics were synthesized through cold isostatic pressing and solid-state reaction. The microstructure, defects, microwave dielectric properties, and the effect of Ca2+ doping of Sr2CeO4 ceramics were systematically investigated. As the sintering temperature increased, the densities of Sr2CeO4 ceramics rose, the content of oxygen vacancies increased, and Ce4+ reduction would be enhanced. In addition, the Sr2CeO4 structure had poor compatibility with Ca2+. The major phase could be kept unchanged only when x ≤ 0.1. The reason was that the doping of Ca2+ intensified the distortion of the CeO6 octahedron and induced the structural transformation of the common edges (Sr2CeO4) to the common angles (SrCeO3). With the increase of dopant, the densities of Sr2-2xCa2xCeO4 ceramics increased significantly, while the content of oxygen vacancies also increased. The microwave dielectric properties were mainly influenced by the density, structural symmetry, defects, and the second phase SrCeO3. The dielectric permittivity (εr) of 13.4–15, the quality factor (Qf) of 118,580–52,170 GHz, and the temperature coefficient of resonant frequency (τf) of ?58.3 ~ ?47.5 ppm/°C were obtained for Sr2-2xCa2xCeO4 ceramics When x ≤ 0.1. This work has provided a foundation for further research on cerate microwave dielectric ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号