首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we report the chemical characteristics of silica aerogels that were produced by adding SiO2 nanoparticles into silica aerogel by ambient pressure drying. We synthesized silica aerogel composites with different weight percentages of SiO2 nanoparticles ranging from 0 wt% to 0.025 wt% of the total amount of solution. As the wt% of SiO2 nanoparticles increased, the number of chemical bonds that formed during condensation of the silica aerogel increased because of the presence of surface hydroxyl groups, thus the particle size of the silica aerogels increased. Silica nanoparticle-doping of silica aerogels can be used to control the synthesis of nanocomplex structures.  相似文献   

2.
In order to compare the various precursors of silica aerogels, three different precursors namely TMOS, TEOS and Na2SiO3 were studied in this paper. The property differences of the aerogels caused by the three precursors were discussed in terms of reaction process, gelation time, pore size distributions, thermal conductivity, SEM, hydrophobicity and thermal stability. It has been found that the gelation time of the silica gel is strongly dependent on the type of precursor used. During the surface modification process, organic groups were attached to the wet gel skeletons transforming the hydrophilic to the hydrophobic which were characterized by Fourier Transform Infrared spectroscopy (FTIR). It has been found that the contact angle of the Na2SiO3 and TMOS precursor based aerogels with water have the higher contact angle of 149° and whereas Na2SiO3 precursor based aerogel has the lower contact angle of 130°. The thermal conductivities of the Na2SiO3 and TMOS based aerogels have been found to be lower (0.025 and 0.030 W m?1 K?1, respectively) compared to the TEOS based (0.050 W m?1 K?1) aerogels. The pore sizes obtained from the N2 adsorption measurements varied from 40 to 180, 70 to 190, and 90 to 200 nm for the TEOS, TMOS and Na2SiO3 precursor based aerogels, respectively. The scanning electron microscopy studies of the aerogels indicated that the Na2SiO3 and TMOS based aerogels show narrow and uniform pores while the particles of SiO2 network are very small. On the other hand, TEOS aerogel show non-uniform pores such that the numbers of smaller size pores are less compared to the pores of larger size while the SiO2 particles of the network are larger as compared to both Na2SiO3 and TMOS aerogels. Hence, the surface are of the aerogels prepared using TEOS precursor has been found to be the lowest (~620 m2 g?1) compared to the Na2SiO3 (~868 m2 g?1) and TMOS (~764 m2 g?1) aerogels.  相似文献   

3.
The hybrid organic/inorganic silica aerogels experiment a drastic mechanical change into rubber behaviour in relation with the pure inorganic silica aerogel as a brittle material. Aerogels were prepared by sol–gel process and drying by venting off the supercritical ethanol, no degradation of the organic polymer was detected. TEOS (tetraethoxysiloxane) and PDMS (polydimethylsiloxane) were used as inorganic and organic precursors, respectively. Depth sensing nanoindentator was used to study the mechanical properties, which is extremely sensitive to small loads (1 mN) and penetration depths (10 nm). The TEOS inorganic clusters and the polymer crosslinking degree influence the microstructure of the hybrid aerogels. Surface indentations maps reveal the different heterogeneities such as the tough silica matrix, the softness of the elastic polymer chains and the plastic microcracks in pores. The values obtained are compatible with the macroscopic ones resulting from uniaxial compression. Creep tests confirm that the compliance parameter increases with the polymer content and results can be theoretically modeled by the Burger model.  相似文献   

4.
In the present work, results on the physico-chemical properties of the silica aerogels prepared by sol–gel process using mixtures of TMOS and MTMS as precursor are reported. The wide range of precursor mixture was studied with ratio of MTMS/TMOS in precursor mixtures as 0:100, 25:75, 50:50, 75:25, and 100:0 by volume. The gels with these precursor mixtures were successfully prepared using two step acid–base catalysis for gelation. Acetic acid (0.001 M) and NH4OH (1.5 M) were used for catalysis and resulting alcogels were subsequently dried by supercritical solvent extraction method. FTIR spectroscopy revealed that the aerogels show more intense peak at 1,260 and 790 cm−1 attributed to Si–CH3 resulting in more hydrophobic nature and these results were concurrent with adsorbed water content measurements made using Karl Fischer’s titration technique. The resulted aerogels were characterized using differential thermal analysis, thermo gravimetric analysis and surface area measurements. The surface area measurements showed an interesting trend that the surface area increased from 395 to 1,037 m2/g with increase in MTMS content in the precursor mixture from 0 to 50% and then again decreased to 512 m2/g for further increase in MTMS content from 50 to 100% in the precursor mixture. It was observed from our studies that silica aerogels prepared using a starting mixture of 50% TMOS and 50% MTMS resulted in high moisture resistance (adsorbed water content of 0.721% w/w), low density of 90 kg/m3 and the highest surface area of 1,037 m2/g, which has great potential for catalysis support applications.  相似文献   

5.
An investigation of the performance of catalytic aerogel filters   总被引:1,自引:0,他引:1  
Gas permeable, photoactive and crack-free titania–silica aerogels of high titanium content (i.e., up to Ti/Si = 1) were prepared by two-steps acid–base catalyzed method involving an acid-catalyzed prehydrolysis of silicon alkoxide followed by a base-catalyzed hydrolysis/condensation reactions with a chelated titania precursor. The prepared titania–silica aerogels displayed good mechanical strength (>30 kN m−2), large surface area (>550 m2/g), mesoporous structure (8–11 nm) and good gas permeation. The porous aerogels trap and filter airborne particulates and the titania–silica aerogel have a fair performance for aerosol (65%) and bioaerosol (94%) filtrations. The photoactive anatase nano-TiO2 crystallized within the aerogel displays an order of magnitude higher reaction rate for UVA photooxidation of trichloroethylene compared to commercial Degussa P25 TiO2. The bactericidal activity of the titania–silica aerogel for Bacillus subtilis cells under UVA was also six orders of magnitude better.  相似文献   

6.
For the sake of enhancing the performance of flexible silica aerogel in practical applications, flexible SiO2/SnO2 nanofibers (SSNF) reinforced flexible silica aerogel composites (abbreviated as SiO2-SSNF) were successfully prepared. Firstly, the SiO2/SnO2 nanofibers with fine diameter (~320 nm) and excellent flexibility were prepared by electrospinning technology. Then the aerogel composites were synthesized by adding the flexible SSNF to the silica solution and through the sol-gel method and ethanol supercritical drying technology. The effects of different content of the nanofibers on thermal conductivity and Yong's modulus of SiO2-SSNF aerogel composites were investigated. The SiO2/SnO2 nanofibers were randomly dispersed in the flexible silica aerogel and the great integrity of the material result in smaller linear shrinkage, better thermal protection, and mechanical properties compared with those pure SiO2 aerogels. The final SiO2-SSNF aerogel composites possess excellent thermal conductivity (0.025-0.029 W/(m∙K)) and higher Yong's modulus (70 kPa), which was twice than that of the pure silica aerogel. This prepared SiO2-SSNF aerogel composites can be better used in thermal insulation due to its excellent flexible and thermal insulation property.  相似文献   

7.
Alumina–silica composite aerogels have drawn vast attention due to their enhanced thermal stability compared to pristine alumina aerogels. However, they are generally weakly-crystallized and tend to experience inevitable sintering and significant surface area loss especially above 1200 °C. In this study, we developed a hydrothermal treatment and supercritical drying strategy for synthesizing novel, well-crystallized, silica-modified boehmite aerogels and fiber-reinforced composites. For the prepared aerogel, network coarsening was significantly hindered and the α-Al2O3 transition was completely prevented even at 1400 °C. As a result, the aerogel exhibits extremely high surface area maintenance (87 % and 53 % after 1300 °C and 1400 °C calcination, respectively) and low linear shrinkage (14 % after 1300 °C calcination) at elevated temperatures. The composite with good toughness shows excellent heat resistance and thermal insulating performance up to 1500 °C. These findings provide a general, direct new idea to improve the thermal tolerance of alumina-based aerogels and extend their applications to higher temperatures.  相似文献   

8.
Noninvasive rapid in vivo imaging and detection of biomedical implants is a critical part of the design and implementation of smart implants. Thermographic phosphors offer a precise and remotely accessible sensing method that has been utilized here. We present the first in vivo X-ray images of La2O2S:Eu-doped crosslinked silica aerogels and polydimethylsiloxane (PDMS) with increasing dopant concentrations. Results show that native PDMS and crosslinked silica aerogel do not show noticeable attenuation of X-rays while image analysis yields values of the absorption coefficient of 0.014 for the doped aerogel and a range of 0.015–0.017 for the doped PDMS.  相似文献   

9.
Freestanding and crack-free titania–silica aerogels with high titanium content (i.e., Ti/Si = 1) were successfully prepared by adjusting the hydrolysis of the two alkoxide precursors to a comparable rate during the sol–gel processing. Two titania–silica aerogels were prepared by ethanol and CO2 supercritical drying methods. Well-dispersed, nanometer-sized anatase crystal domains (ca. 10 nm) were crystallized by high temperature, ethanol supercritical drying. The crystalline domains were solidly anchored to the aerogel network by Ti–O–Si bonds. Titania–silica aerogels prepared by CO2 supercritical drying method were devoid of TiO2 crystals. A molecular-level mixing was achieved and anatase TiO2 was only crystallized with difficulty by high temperature calcination (1073 K). Both aerogels were mesoporous and displayed similar open pore structure that is readily accessible to reactant molecules. However, only the titania–silica aerogel with anatase TiO2 prepared by ethanol supercritical drying was active for the gas phase, photocatalytic oxidation of volatile organic compounds (i.e., isopropanol and trichloroethylene). Catalysts prepared from Degussa P25 TiO2 displayed lower activity under similar reaction conditions.  相似文献   

10.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   

11.
Silica aerogels are excellent thermal and acoustic insulators because of interconnected open nanopores with more than 90% porosity and higher surface area. Silica aerogel is derived by sol-gel process and dried under super-critical, sub-critical or ambient pressure conditions. Thin silica aerogel sheets could be effective thermal insulators but high fragility hinders the wider applications. We have successfully developed a synthesis method for thin, flexible, and non-fragile aerogel sheets with excellent hydrophobicity, lower thermal conductivity, and non-combustible properties via ambient drying method. The silica aerogel sheets prepared compose of silica aerogel powder, fiber glass chopped strands, and solvent-based binder. Aerogel thin insulation sheets of thickness 164 μm were prepared by pressing through rollers using aerogel paste composed of aerogel powder, fiber glass strands, and binders. The thermal conductivity values obtained were between 0.02~0.63 W/mK at temperature 25~400°C, contact angle θ = 121‘, weight loss 3.91% when heated up to 800°C in air, dielectric voltage breakdown 3.67 kV, dielectric strength 6.37 kV/mm and tensile strength of 2.65 N/mm². The overall thermal, electrical, and mechanical evaluation of aerogel thin insulation sheet showed they have higher potential to replace existing thick and bulky aerogel composites as thermal and electrical insulators in aviation, automobiles, electronics, and high power batteries.  相似文献   

12.
《Ceramics International》2017,43(7):5774-5780
Crack-free silicon oxycarbide (SiOC) aerogel monolith was fabricated by pyrolysis of precursor aerogel prepared from triethoxyvinylsilane/tetraethoxysilane (VTES/TEOS) using sol-gel process and ambient drying. Effects of different precursors, the amount of base catalyst (NH4OH) and the heating rate during pyrolysis on the properties such as monolithicity, bulk density, surface area and pore size distribution of aerogels were investigated. The results show that the crack-free SiOC aerogel can be easily obtained from VTES/TEOS as compared to that of methyltriethoxysilanes/tetraethoxysilane (MTES/TEOS) and phenyltriethoxysilanes/tetraethoxysilane (PhTES/TEOS) precursors. The influence of heating rate during pyrolysis process on shrinkage rate, ceramic yield and surface area of the SiOC aerogels could be ignored, while the variation in the amount of NH4OH exerted a strong impact on the properties of SiOC aerogels. Increasing the amount of NH4OH resulted in the decrease of bulk density and surface area of SiOC aerogels from 0.335 g/cm3 and 488 m2/g to 0.265 g/cm3 and 365 m2/g. The resultant SiOC aerogels exhibit high compressive strength (1.45–3.17 MPa). 29Si MAS NMR spectra revealed the retention of Si-C bond in the SiOC aerogels after pyrolysis at 1000 °C. The present work demonstrates VTES/TEOS is a promising co-precursors to easily and low cost synthesize large size SiOC aerogel monolith.  相似文献   

13.
《Ceramics International》2023,49(13):21161-21174
TiO2, a light-shielding agent for silica aerogels, is widely used in optical limiting and photocatalysis, but its application in high-energy lasers is extremely limited. We added TiO2 to silica aerogel in three different ways to get the best resistance to high energy laser. Through microstructure analysis and high energy laser irradiation test results, it is concluded that direct deposition of TiO2 nanoparticles can achieve the best laser resistance synergistic effect with silica aerogel. A thermal barrier temperature difference of 1275 °C was generated with a material thickness of 7.5 mm. Comparing the microscopic pore structure before and after high-energy laser irradiation, it was observed that the phase transition destruction of the TiO2–silica composite aerogel was completely different from that of pure silica aerogel. The TiO2–silica composite aerogel showed no signs of breakdown within 2 min of continuous-wave (CW) laser irradiation with power of 7 kW·cm-2. By changing the amount of TiO2 added, we also obtained the general trend of this synergistic effect, extended the mathematical model “maximum energy transfer radius (METR)”, and advanced the application of this material in the field of high energy laser protection.  相似文献   

14.
In this work, we developed a new type of thermal insulation materials by combining the silica aerogel (SiO2) and graphene (G) followed by aging and supercritical drying. The effects of different G/SiO2 mass ratios on the microstructures and properties of opacified G/SiO2-x composite aerogels were investigated. The results showed that the graphene was well-distributed in the SiO2 matrix. Meanwhile, the opacified composite aerogels showed high-specific surface area (~?1000 m2/g). Due to the unique bandgap feature and conjugated large π bond of graphene, the thermal insulation property of G/SiO2-x composite aerogels was enhanced in contrast with the pure SiO2 aerogel. Moreover, a possible mechanism of heat transfer was discussed to interpret the result.  相似文献   

15.
《Ceramics International》2017,43(13):9896-9905
A novel carbonaceous SiC/mullite composite aerogel is derived from catechol-formaldehyde/silica/alumina hybrid aerogel (CF/SiO2/AlOOH) via polymer-derived ceramics route (PDCR). The effects of the reactants concentrations on the physicochemical properties of the carbonaceous SiO2/Al2O3 aerogel and SiC/mullite aerogel are investigated. The mechanism of the textural and structural evolution for the novel carbonaceous SiC/mullite is further discussed based on the experimental results. Smaller reactants concentration is favorable to formation of mullite. Reactants concentration of 25% is selected as the optimal condition in considering of the mullite formation and bulk densities of the preceramic aerogels. Spherical large silica particles are also produced during heat treatment, and amorphous silica is remained after this reaction. With further heat treatment at 1400 °C, silicon carbide and mullite coexist in the aerogel matrix. The mullite addition decreases the temperature of SiC formation, when compared with the conventional methods. However, after heat treatment at 1450 °C, the amount of mullite begins to decrease due to the further reaction between carbon and mullite, forming more silicon carbide and alumina. The carbonaceous SiC/mullite can be transferred to SiC/mullite binary aerogel after carbon combustion under air atmosphere. The carbonaceous SiC/mullite has a composition of SiC (31%), mullite (19.1%), SiO2 (14.4%), and carbon (35%). It also possesses a 6.531 nm average pore diameter, high surface area (69.61 m2/g), and BJH desorption pore volume (0.1744 cm3/g). The oxidation resistance of the carbonaceous SiC/mullite is improved for 85 °C when compared with the carbon based aerogel.  相似文献   

16.

In this study, hydrophobic silica aerogels were synthesized from rice husk ash-derived sodium silicate through sol-gel processing, solvent exchange, surface modification and ambient pressure drying. By volume, 10% of trimethylchlorosilane (TMCS) in 90% of n-hexane was used as a hydrophobic solution in the surface modification process. The physical and chemical properties of silica aerogels were characterized by density and porosity measurements, scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller theory (BET) and dynamic scanning calorimetry (DSC). The hydrogels prepared were in the form of 2.5 ± 0.5 mm beads and then converted into alcogels through solvent exchange with ethanol for repetition of 3, 6 and 9 days. It is found that the optimal quality of silica aerogels with the BET surface area as high as 668.82 m2/g was obtained from the alcogels of the solvent exchange period of 9 days. Depending on the size of the gel’s block, a longer solvent exchange period will ensure adequate removal of pore water. Post heat treatment on silica aerogels obtained from the 9 days of solvent exchange at 200, 300 and 400 °C for 2 h results in slight decreased of aerogel’s density from 0.048 g/cm3 to 0.039 g/cm3 and the hydrophobicity of the aerogels is decreased above 380 °C as confirmed by DSC analysis.

  相似文献   

17.
Silica aerogels were made by sol-gel techniques using industrial silicon derivatives (polyethoxydisiloxanes, E-40), followed by drying under sub-critical pressure with iso-butanol. The shrinkage (linear), specific surface area, SBET, SEM, TEM and the pore size distribution of the silica aerogels were investigated. The results show that the shrinkage (linear) is below 5%, diameter of the silica particles is about 6 nm and the pore size of the silica aerogels is 10 nm. The specific surface area of the silica aerogel is 559.2 m2/g. IR and NMR techniques were used to determine the organic groups on the silica matrix, GC/MS was also introduced to analyse the composition of the recycled iso-butanol. The surface modification and the reactions of iso-butanol to the silica aerogel are also discussed.  相似文献   

18.
The high-performance polymer para-aramid (PPTA) is discovered to gel too soon during the polymerization process, resulting in poor processing performance. In this work, a homogeneous polymer solution containing heterocyclic para-aramid (HPPTA) was successfully synthesized by introducing 2,4-aminophenyl-5-aminobenzimidazole groups into the molecular chains of PPTA, and then HPPTA aerogel was prepared using a supercritical drying technique that took advantage of the HPPTA solution's excellent property of slow gelation. When the HPPTA polymer mass fraction was 1 wt%, the aerogel had the lowest density of 0.086 g cm−3 with a BET specific surface area of 376.59 m2 g−1. The HPPTA-2 aerogel had better adsorption performance for anionic dye methyl orange, with a maximum adsorption capacity of 319.47 mol g−1; however, its adsorption capacity for cationic dye methylene blue and neutral dye dimethyl yellow was very low, at only 19.68 and 0 mol g−1, respectively. The selective adsorption ability of HPPTA aerogel made it a simple and scalable platform for removing anionic dyes from water solutions. Furthermore, the HPPTA aerogel has outstanding thermal properties for thermal insulation applications in severe environments due to the synergistic effect of the 3D porous structure inside the aerogel and the exceptional thermal stability of the HPPTA.  相似文献   

19.
The effects of adding methyltrimethoxysilane (MTMS) to the synthesis formulation on the hydrophobicity and physical properties of silica aerogels are reported. The molar ratio of the methanol (MeOH) solvent, water (H2O), and the ammonia (NH4OH) catalyst to tetramethoxysilane (TMOS) precursor was fixed at 1TMOS:12MeOH:4H2O:3.6×10−3NH4OH throughout the experiment and the MTMS/TMOS molar ratio M was varied from 0 to 1.55. After gelation, the alcogels were dried supercritically by high-temperature solvent extraction. The hydrophobicity of the resulting aerogels was tested by measuring the water uptake by the aerogel as a function of time, after putting them directly on the surface of water. It was found that for M<0.26 the aerogels were less hydrophobic but more transparent (>90% in the visible range), whereas for M>1.03 the aerogels were more hydrophobic but semi-transparent to opaque. Aerogels that possessed good hydrophobicity and transparency (85% in the visible range) were obtained with an M≈0.70. An increase in the MTMS content in the gels shifted the pore size distribution towards larger pore radii with a broad distribution. In order to determine the thermal stability of the hydrophobic nature of the aerogels, they were heat-treated in air in the temperature range between 25 and 350°C. It was found that below 280°C the aerogel samples showed hydrophobic properties, whereas above 280°C the hydrophobicity vanished. This is due to the disappearance of the CH3 groups in the aerogels. The aerogels were characterized by optical transmittance, pore size distribution, BET surface area and infrared spectroscopy measurements.  相似文献   

20.
The self-assembly between graphene oxide sheets and resol-type phenolic prepolymers was investigated as a method to form three-dimensional porous carbon objects with high surface areas and low densities. After freeze-drying and subsequent pyrolysis of the assembled hydrogels, ultralight graphene/carbon composite aerogels with high surface areas and porosity, good conductivity, and well-defined bulk shape were obtained. By adjusting the amount of graphene oxide and resol in the precursor mixture, aerogels with a density as low as 3.2 mg/cm3 or a surface area as high as 1019 m2/g could be prepared. It is proposed that resol molecules are first adsorbed on the surface of graphene oxide sheets, and then the surface-coated sheets are crosslinked by the polymerization of resol prepolymers. The absorption performance was evaluated for the aerogel with the lowest density. Due to the high porosity, the aerogel displayed fast absorption rates for organic solvents as well as high absorption efficiencies. The high conductivity of the aerogels permits good performance as binderless monolithic electrodes for supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号