首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(16):26578-26588
CaO–MgO–Al2O3–SiO2 (CMAS) corrosion poses serious hidden dangers for the application of thermal barrier coatings (TBCs). In this study, LaMgAl11O19 (LMA) and GdPO4 were mixed at molar ratios of 2:1, 1:1 and 1:2 to prepare LMA/GdPO4 materials, and the CMAS corrosion behaviours of these materials were investigated at 1300°C–1500 °C for 20 h and 40 h. It was demonstrated that temperature was the main factor influencing the corrosion behaviours and products. The materials were damaged at 1300 °C by the crystallization of CMAS melts to form CaAl2Si2O8. In contrast, the materials were corroded by CMAS melts via the reaction between CMAS and GdPO4 at 1500 °C. These results indicate that the addition of GdPO4 to LMA can improve the resistance of the LMA material to CMAS corrosion.  相似文献   

2.
《Ceramics International》2023,49(18):29948-29961
High temperature corrosion behavior of Ca2Gd8(SiO4)6O2 (CGdS) apatite has been investigated in the presence of molten calcium-magnesium-aluminosilicate (CMAS) glass having the composition 21.9 CaO - 4.3 MgO - 5.4 Al2O3 - 63.0 SiO2 - 4.3 Na2O - 0.8K2O - 0.1 Fe2O3 (weight %). CGdS apatite powder was prepared by solid state synthesis from constituent oxides. Pellets of CGdS apatite + CMAS mixed powder and CGdS-CMAS diffusion couples were annealed at 1200, 1300, 1400, and 1500 °C for 1 and 20 h in ambient atmosphere. Development of phases in heat treated specimens was characterized using various analytical techniques as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high angle annular dark field imaging, selected area electron diffraction and energy dispersive X-ray spectroscopy. In both pellets and diffusion couples, monoclinic cyclosilicate Ca3Gd2(Si3O9)2 formed from reaction of apatite with CaO in the CMAS melt only in samples heat treated at 1200 °C for 1 and 20 h or at 1300 °C for 1 h. Triclinic CaSiO3 and monoclinic diopside MgCaSi2O6 were also observed in samples annealed at 1200 and 1300 °C. At 1400 and 1500 °C, because of its low viscosity, CMAS infiltrated along the pores and grain boundaries of the apatite substrates in diffusion couples. Phase compositions predicted from thermochemical computation were in good agreement with those observed experimentally. Ca2Gd8(SiO4)6O2 apatite has the potential for being an effective T/EBC in circumventing the penetration of molten CMAS up to about 1300 °C but not at higher temperatures.  相似文献   

3.
Calcium-magnesium-alumina-silicate (CMAS) attack has been considered as a significant failure mechanism for thermal barrier coatings (TBCs). As a promising series of TBC candidates, rare-earth phosphates have attracted increasing attention. This work evaluated the resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) compounds to CMAS attack at 1250 °C. Due to the chemical reaction between molten CMAS and LnPO4, a dense, crack-free reaction layer, mainly composed of Ca3Ln7(PO4)(SiO4)5O2 apatite, CaAl2Si2O8 and MgAl2O4, was formed on the surface of compounds, which had positive effect on suppressing CMAS infiltration. The depth of CMAS penetration in LnPO4 (Ln = Nd, Sm, Gd) decreased in the sequence of NdPO4, SmPO4 and GdPO4. GdPO4 had the best resistance characteristics to CMAS attack among the three compounds. The related mechanism was discussed based on the formation ability of apatite phase caused by the reaction between molten CMAS and LnPO4.  相似文献   

4.
High-temperature degradation of the plasma sprayed 16 mol% TaO2.5 + 16 mol% YO1.5 co-stabilized ZrO2 (YTZ) and YSZ (7.6 wt% Y2O3-stabilized ZrO2) coatings under calcium-magnesium-aluminon-silicate (CMAS) attack at 1200 °C and 1250 °C were comparatively investigated. Results indicated that the coatings were insensitive to the infiltration of CMAS after 10 h corrosion at 1200 °C. At 1250 °C, the entire YSZ cross-section completely failed and also underwent serious chemical corrosion after 3 h hot corrosion. Even after 10 h corrosion, the penetration depth of CMAS into the YTZ was only about 80 µm. For YTZ coating, the YTaO4 stabilizer could not easily dissolve in CMAS and precipitated out of the YTZ crystal lattice owing to the strong chemical interaction between Ta5+ and Y3+. The wettability of CMAS on YTZ coating was worse than that on YSZ coating. Compared with YSZ coating, the YTZ coating showed better resistance to CMAS corrosion.  相似文献   

5.
《Ceramics International》2020,46(7):9311-9318
The corrosion of YSZ TBCs attacked by calcium–magnesium–aluminosilicate (CMAS) is a serious problem. Yttrium tantalite (YTaO4), a new kind of potential thermal barrier ceramic material, was expected to replace the YSZ to manufacture the TBCs because of its great thermophysical characteristics. In this study, porous YTaO4 ceramic pellets, instead of actual TBCs, were used to investigate the CMAS corrosion resistance at 1250 °C. Results indicated that CMAS couldn't cover the whole surface of YTaO4 pellets homogeneously because of low wettability between liquid CMAS and YTaO4, in addition, there was almost no reaction layer after 4 h reaction. The XRD results showed that M-YTaO4, M′-YTaO4, Ca2Ta2O7 and Y2Si2O7 were the main four phases after reaction and there was no phase containing the elements of Mg and Al. Compared with YSZ TBCs, this new kind of potential thermal barrier ceramic material showed well resistance to CMAS corrosion.  相似文献   

6.
《Ceramics International》2022,48(12):16499-16504
The thermochemical degradation of hafnium silicate (HfSiO4) was investigated with a molten calcium-magnesium-aluminosilicate (CMAS) glass relevant to gas turbine engine applications. Sintered HfSiO4 coupons were fabricated, within which wells were drilled and filled with CMAS glass powder at a loading of ~35 mg/cm2. Samples were heat treated at 1200°C, 1300°C, 1400°C, and 1500°C for 1 h, 10 h, and 50 h. At 1200°C and 1300°C, slow formation of a Ca2HfSi4O12 cyclosilicate phase was observed at the HfSiO4-CMAS interface. At 1300°C and higher, rapid infiltration of CMAS into the material along the grain boundaries was observed. Initial conjecture into CMAS degradation mechanisms of HfSiO4 are presented herein.  相似文献   

7.
A calcium-magnesium aluminosilicate (CMAS) glass was prepared by melting a sample of desert sand to evaluate the high-temperature interactions between molten CMAS and yttrium disilicate (Y2Si2O7), an environmental barrier coating (EBC) candidate material. Cold-pressed pellets of 80?wt% Y2Si2O7 powder and 20?wt% CMAS glass powder were heat treated at 1200?°C, 1300?°C, 1400?°C and 1500?°C for 20?h in air. The resulting phases were evaluated using powder X-ray diffraction. In the second set of experiments, free standing hot-pressed Y2Si2O7 substrates with cylindrical wells were filled with CMAS powder to a loading of ~35?mg/cm2 and heat treated in air at 1200?°C, 1300?°C, 1400?°C and 1500?°C for 20?h. Scanning electron microscopy, energy-dispersive spectroscopy and electron microprobe analysis were used to evaluate the microstructure and phase compositions of specimens after heat treatment. An oxyapatite silicate (Ca2Y8(SiO4)6O2) phase was identified in all specimens after CMAS exposure regardless of heat treatment temperature. Apatite appeared to form by dissolution of Y2Si2O7 into molten CMAS, reacting with CaO in the melt according to the reaction 4Y2Si2O7 +?2CaO → Ca2Y8(SiO4)6O2 +?2SiO2, and followed by precipitation of the apatite phase.  相似文献   

8.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

9.
To improve the ability of rare-earth (RE) silicates to resist molten calcium–magnesium–aluminosilicate (CMAS) at high temperature, a novel high-entropy (4RE0.25)2Si2O7/(4RE0.25)2SiO5 (RE = Y, Yb, Er, and Sc) multiphase ceramic was prepared by a two-step process. During sintering, (4RE0.25)2SiO5 can react with SiO2 at the grain boundaries of (4RE0.25)2Si2O7, which can not only purify the grain boundary but also promote the growth of the original (4RE0.25)2Si2O7 grains, thereby significantly improving the ability to resist molten CMAS corrosion at high temperature. After corroding at 1500°C for 48 h, the reaction layer of the multiphase ceramic was only 55 μm thick. Our results confirm that the high-entropy RE silicate multiphase ceramics represent an effective way to improve the ability to resist molten CMAS corrosion at high temperature.  相似文献   

10.
《Ceramics International》2020,46(3):2618-2623
Hot corrosion behavior of Yb2Si2O7 bulk exposed to NaVO3 molten salt was investigated at 1000–1500 °C for 2 h. Results showed that YbVO4 was produced on the bulk surface at 1000–1200 °C because of the acidity of the corrosion medium. The corrosion product of Yb2SiO5 was yielded at 1300–1500 °C due to the transformation of the corrosion medium from acidity to alkalinity. The content of YbVO4 in the products decreased as the temperature increased, while that of Yb2SiO5 increased with an increase in temperature. In this paper, various hot corrosion mechanisms of Yb2Si2O7 bulk exposed to NaVO3 molten salt are discussed based on the formation of YbVO4 and Yb2SiO5.  相似文献   

11.
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O7 (Gd2Zr2O7-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O7 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina- silicate (CMAS) corrosion tests were carried out at 1250 °C for 1–8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O7-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings.  相似文献   

12.
《Ceramics International》2022,48(22):32877-32885
CaO–MgO–Al2O3–SiO2 (CMAS) deposition significantly degrades the performance of thermal barrier coatings (TBCs). In this study, the microstructure evolution of CMAS glass at temperatures below its melting point was investigated in order to study the potential influence of temperature on the applicability of CMAS glass in TBCs. The CMAS glass fabricated in this study had a melting point of 1240 °C, became opaque, and underwent self-crystallization when the temperature reached 1000 °C. After heat treatment at 1050 °C, diopside and anorthite phases precipitated from the glass; at a higher temperature (1150 °C), diopside, anorthite, and wollastonite were formed as the self-crystallization products. An increase in the dwelling time resulted in the transformation of diopside to wollastonite and anorthite. At 1250 °C, all products formed a eutectic microstructure and melted. The results indicate that even at low temperatures, CMAS glass underwent microstructure evolution, which could influence the coating surface and stress distribution when deposited on TBCs.  相似文献   

13.
《Ceramics International》2016,42(11):12825-12837
The corrosion resistance of micro-and nano-structured scandia and yttria codoped zirconia (nano-4 mol%SYSZ and micro-8.6SYSZ) and yttria doped zirconia (4YSZ) in the presence of molten vanadium oxide were investigated. To this end, duplex TBCs (thermal barrier coatings), composed of a bond coat (NiCrAlY) and a top coat (4SYSZ or 4YSZ), were deposited on the IN738LC Ni-based supper-alloy by atmospheric plasma spraying (APS). The corrosion studies of plasma sprayed TBCs were conducted in 25 mg V2O5 molten salt at 910 °C for different times. The nanostructured coating, as compared to its micro-structured counterpart, in spite of a further reaction with the V2O5 salt, showed a higher degradation resistance during the corrosion test due to increased compliance capabilities resulting from the presence of an extra source of porosity associated with the nano-zones. Finally, the corrosion resistance and degradation mechanism of SYSZ and YSZ coatings were compared with the presence of molten NaVO3 and V2O5 salt, respectively.  相似文献   

14.
《Ceramics International》2021,47(20):28685-28697
Because the CMAS corrosion and phase transformation at elevated temperatures above 1250 °C have limited the applications of traditional YSZ, the design of novel thermal barrier materials is a hotspot. GdTaO4 is considered as a type of potential novel thermal barrier material owing to its low thermal conductivity. In this study, the mechanical and thermal properties, CMAS corrosion resistance, and the wettability of the GdTaO4 were studied and compared with that of YSZ. The results show that the coefficient of thermal expansion and hardness of GdTaO4 are 14.1 × 10−6 K−1 (1350 °C) and 534.2 Hv0.3 respectively. The thickness of CMAS reaction layer of GdTaO4 is ~30.8 μm after 24 h reaction at 1350 °C, which is thinner than that of YSZ. After corrosion reaction, the CMAS glass aggregated instead of completely disappearing or continuously extending over the surface of GdTaO4. The main reaction product is Ca2Ta2O7, and the anorthite phase may not be detected, which is similar to YTaO4. By comparison, the dense substrate of YSZ became porous and CMAS glass has disappeared after 10 h. CMAS corrosion at 1350 °C. The on-line contact angle results show that the wettability of CMAS on GdTaO4 is worse than that on YSZ at 1350 °C, while the opposite of the work of adhesion, which indicates that GdTaO4 can remove liquid CMAS more easily than YSZ TBCs during the service. Furthermore, the corrosion depth and areas of GdTaO4 are smaller than those of YSZ in the same situation. These findings suggest that GdTaO4 possesses better high-temperature properties and CMAS corrosion resistance than YSZ as a kind of potential of thermal barrier material.  相似文献   

15.
Enhancing the resistance to molten silicate corrosion is crucial for the long service life of environmental barrier coatings (EBCs). In this study, we used the Al-modification technique to enhance the CMAS corrosion resistance of Si/Yb2Si2O7 coatings prepared by plasma spray-physical vapor deposition. The results show that the Al-modified Yb2Si2O7 coating had higher resistance to CMAS corrosion than the Yb2Si2O7 coating annealed at 1300 ℃ for 100 h, which is related to the refractory mullite and Yb2Mg(AlO2)2O3 generated during the CMAS exposure of Al-modified Yb2Si2O7 coating. The Al-modified Yb2Si2O7 coating also exhibited excellent resistance to oxygen penetration. The Al-modification technology provides the direction for the corrosion resistance of Yb2Si2O7 system to CMAS.  相似文献   

16.
LaMgAl11O19 (LMA) coatings usually have a large amount of amorphous phase due to the rapid cooling during spraying, which will not benefit the service lifetime in aeroengine. Fortunately, the thermal cycling lifetime of LMA TBCs can be improved by heat treatment. Moreover, the hot corrosion degradation with calcium-magnesium-alumino-silicate (CMAS) attracts much attention recently. Therefore, to clarify the influence of heat treatment on CMAS corrosion behaviour, plasma-sprayed LMA coatings were isothermally heat-treated and then exposed to CMAS. Results indicate that heat treatment promoted a crystallization of LMA coatings, but the molten CMAS had completely penetrated into LMA coatings along the increased and widened vertical microcracks. It is the isotropic pores that determine the penetration kinetics of CMAS to LMA. CaAl2Si2O8 and MgAl2O4 were the predominant reaction products in the superficial layer, while Ca3La6(SiO4)6 interpenetrated with the residual LMA in the inner layer, forming a corroded bilayer for LMA coatings.  相似文献   

17.
With the increased demand for high operating temperature of gas turbine engines, corrosion by molten calcium-magnesium-alumino-silicate (CMAS) exhibits a significant challenge to the development of durable environmental barrier coatings (EBCs). EBC candidates, γ-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 were explored on their corrosion resistance to CMAS melts at 1300 °C and 1500 °C for 50 h. Interaction and degradation mechanisms were investigated and the corrosion behaviors showed different trends at high temperatures. At 1300 °C, RE2Si2O7 dissolves into CMAS melts and apatite phases reprecipitate forming a thick recession layer. However, when the temperature increases to 1500 °C, CMAS melts vigorously penetrate through the grain boundary of RE2Si2O7 and ‘blister’ cracks form throughout the samples. The reduced grain boundary stability at 1500 °C promotes the penetration of CMAS melts in RE2Si2O7. Grain boundary engineering is critically demanded to optimize CMAS corrosion at high temperatures.  相似文献   

18.
《Ceramics International》2019,45(16):19710-19719
Because gas turbine engines must operate under increasingly harsh conditions, the degradation of thermal barrier coatings (TBCs) by calcium-magnesium-alumina-silicate (CMAS) is becoming an urgent issue. Mullite (3Al2O3·2SiO2) is considered a potential material for CMAS resistance; however, the performance of mullite in the presence of CMAS is still unclear. In this study, mullite and Al2O3–SiO2 were premixed with yttria stabilized zirconia (YSZ) in different proportions, respectively. Porous ceramic pellets were used to conduct CMAS hot corrosion tests, and the penetration of molten CMAS and its mechanism were investigated. The thermal and mechanical properties of the samples were also characterized. It was found that the introduction of mullite and Al2O3–SiO2 mitigated the penetration of molten CMAS into the pellets owing to the formation of anorthite, especially at 45 wt% mullite/55 wt% YSZ. Compared with Al2O3–SiO2, mullite possesses a higher chemical activity and undergoes a faster reaction with CMAS, thus forming a sealing layer in a short time. Additionally, the thermal expansion coefficient, thermal conductivity, and fracture toughness of different samples were considered to guide the architectural design. Considering the CMAS corrosion resistance, thermal and mechanical performance of TBCs systematically, a TBC system with a multilayer architecture is proposed to provide a theoretical and practical basis for the design and optimization of the TBC microstructure.  相似文献   

19.
The corrosion resistance to calcium-magnesium-alumino-silicates (CMAS) is critically important for the thermal barrier coatings (TBCs). High-entropy zirconate (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (HEZ) ceramics with low thermal conductivity, high coefficient of thermal expansion and good durability to thermal shock is expected to be a good candidate for the next-generation TBCs. In this work, the CMAS corrosion of HEZ at 1300°C was firstly investigated and compared with the well-studied La2Zr2O7 (LZ). It is found that the HEZ ceramics showed a graceful behavior to CMAS corrosion, obviously much better than the LZ ceramics. The HEZ suffered from CMAS corrosion only through dissolution and re-precipitation, while additional grain boundary corrosion existed in the LZ system. The precipitated high-entropy apatite showed fine-grained structure, resulting in a reaction layer without cracks. This study reveals that HEZ is a promising candidate for TBCs with extreme resistance to CMAS corrosion.  相似文献   

20.
Thermochemical interactions between Ca2Y8(SiO4)6O2 apatite, a potential environmental barrier coating (EBC) material, and a synthetic CMAS having the composition 23.3 CaO - 6.4 MgO - 3.1 Al2O3 - 62.5 SiO2 - 4.1 Na2O - 0.5 K2O - 0.04 Fe2O3 mole % were investigated. Pellets of apatite + CMAS powder and hot-pressed apatite disc-CMAS couples were annealed at 1200–1500 °C for 1–50 hours in air. Powder X-ray diffraction (XRD) was used to identify the phases present. Polished cross-sections of the heat treated pellets and diffusion couples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high angle annular dark field (HAADF) imaging, selected area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS). Ca3Y2(Si3O9)2 cyclosilicate, apatite, and amorphous phases were present in the samples heat treated at 1200 and 1300 °C, whereas no cyclosilicate was detected in samples annealed at 1400 and 1500 °C. A distinct cyclosilicate layer was observed at the apatite-CMAS interface in the diffusion couples heat treated at 1200 and 1300 °C. However, at 1400 and 1500 °C, due to its much lower viscosity, CMAS quickly infiltrated the apatite substrate through pores and along the grain boundaries and no cyclosilicate was observed; the apatite grains dissolved in molten CMAS followed by re-precipitation of apatite needles within an amorphous phase on cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号