首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the current study was evaluation and comparison of hot corrosion behaviors of plasma-sprayed conventional and nanostructured yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs). Hot corrosion studies were performed on the surface of coatings in the presence of a molten mixture of V2O5+Na2SO4 at 1000 °C for 30 h. Results indicated that the hot corrosion mechanisms of conventional and nanostructured YSZ coatings were similar. The reaction between corrosive salt and Y2O3 produced YVO4, leaching Y2O3 from YSZ and causing the detrimental phase transformation of zirconia from tetragonal to monoclinic. The nanostructured coating, as compared to its conventional counterpart, in spite of a further reaction with the corrosive salt, showed a higher degradation resistance during the hot corrosion test due to increased compliance capabilities resulting from the presence of an extra source of porosity associated with the nano-zones.  相似文献   

2.
《Ceramics International》2020,46(11):19217-19227
In this study, nanostructured YSZ powders were deposited on the Hastalloy X Superalloy substrate coated with a metallic bond coat by plasma spraying to produce a nanostructured thermal barrier coating with bimodal microstructure. After that, the coated samples were heat-treated using a Nd:YAG laser. Then, the microstructures of the conventional and nanostructured TBCs before and after the laser glazing process were examined using a scanning electron microscope (SEM). The coating phases were studied by X-ray diffractometry (XRD). The high-temperature corrosion behavior of the nanostructured plasma sprayed coating in the presence of Vanadium pentoxide and Sodium sulfate molten salt was compared with that of the conventional coatings before and after laser treatment at 1050 °C. The hot corrosion results showed that the coatings had a similar degradation mechanism based on which the corrosive molten salt reacted with the stabilizer of YSZ, producing hot corrosion products such as YVO4. It led to an unwanted phase transformation from tetragonal (t) to monoclinic (m) Zirconia and the final degradation of the TBC system. However, reducing molten salt penetration, decreasing surface roughness and, reduction of the specific surface area are three important mechanisms that improved hot corrosion resistance, finally extending the lifetime of the glazed samples. The results also showed that the nanostructured TBC had higher hot corrosion resistance in comparison with other samples.  相似文献   

3.
In this study, the effect of laser glazing on the hot corrosion behavior of nanostructured thermal barrier coatings (TBCs) was investigated. To this end, the hot corrosion test of plasma-sprayed and laser-glazed thermal barrier coatings conducted against 45 wt.% Na2SO4 + 55 wt.% V2O5 molten salt at 910 °C for 30 h in open air atmosphere. The results obtained from hot corrosion test showed that the reaction between Y2O3 and the corrosive salt produced YVO4, leached Y2O3 from YSZ and led to the progressive destabilization transformation of YSZ from tetragonal to the monoclinic phase. The lifetimes of the plasma-sprayed TBCs were enhanced approximately twofold by laser glazing. Reducing the reactive specific surface area of the dense glazed layer with the molten salts and improving the stress accommodation through network cracks produced by laser glazing were the main enhancement mechanisms accounting for TBC life extension.  相似文献   

4.
《Ceramics International》2016,42(11):12825-12837
The corrosion resistance of micro-and nano-structured scandia and yttria codoped zirconia (nano-4 mol%SYSZ and micro-8.6SYSZ) and yttria doped zirconia (4YSZ) in the presence of molten vanadium oxide were investigated. To this end, duplex TBCs (thermal barrier coatings), composed of a bond coat (NiCrAlY) and a top coat (4SYSZ or 4YSZ), were deposited on the IN738LC Ni-based supper-alloy by atmospheric plasma spraying (APS). The corrosion studies of plasma sprayed TBCs were conducted in 25 mg V2O5 molten salt at 910 °C for different times. The nanostructured coating, as compared to its micro-structured counterpart, in spite of a further reaction with the V2O5 salt, showed a higher degradation resistance during the corrosion test due to increased compliance capabilities resulting from the presence of an extra source of porosity associated with the nano-zones. Finally, the corrosion resistance and degradation mechanism of SYSZ and YSZ coatings were compared with the presence of molten NaVO3 and V2O5 salt, respectively.  相似文献   

5.
In this study, first, Gd2Zr2O7/ceria–yttria stabilized zirconia (GZ/CYSZ) TBCs having multilayered and functionally graded designs were subjected to thermal shock (TS) test. The GZ/CYSZ functionally graded coatings displayed better thermal shock resistance than multilayered and single layered Gd2Zr2O7 coatings. Second, single layered YSZ and functionally graded eight layered GZ/CYSZ coating (FG8) having superior TS life time were selected for CMAS + hot corrosion test. CMAS + hot corrosion tests were carried out in the same experiment at once. Furthermore, to generate a thermal gradient, specimens were cooled from the back surface of the substrate while heating from the top surface of the TBC by a CO2 laser beam. Microstructural characterizations showed that the reaction products were penetrated locally inside of the YSZ. On the other hand, a reaction layer having ∼6 μm thickness between CMAS and Gd2Zr2O7 was seen. This reaction layer inhibited to further penetration of the reaction products inside of the FG8.  相似文献   

6.
《Ceramics International》2022,48(7):9038-9050
ZrO2-based hot corrosion-resistant thermal barrier coatings (TBCs) with MoSi2+Al2O3 have gained increasing attention. In this research, a novel dual-layer TBC (CSZ: ZrO2-25 wt% CeO2-2.5 wt% Y2O3/MAC: MoSi2 + Al2O3 + CSZ) was developed, and its hot corrosion was compared to a single-layer CSZ. The atmospheric plasma spray (APS) process was utilized to apply CSZ/MAC and CSZ TBCs on NiCrAlY, as a bond coat to nickel-based superalloy (IN738LC). Different investigations, including hot corrosion test, field emission scanning electron microscopy (FESEM/EDS), and X-ray diffraction (XRD) analyses, were used to reveal why the MAC overlayer improves the CSZ hot corrosion behavior. A medium of Na2SO4-55 wt% V2O5 was used to analyze the hot corrosion; a temperature of 950 °C for 2 h was considered in every single cycle. The results exposed that there is a big difference between the hot corrosion resistance of the dual-layer CSZ/MAC TBC in comparison with the single-layer CSZ. Based on the FESEM analysis, this can be related to the very low diffusion of Na2SO4-55 wt% V2O5 into the dual-layer TBC where the infiltration of aggressive molten salt was diminished. According to the XRD results, two reasons are leading to the degradation of the aforementioned TBCs: (i) the tetragonal to the monoclinic transformation of ZrO2 and (ii) the formation of hot corrosion products, i.e., CeVO4 and YVO4 crystals.  相似文献   

7.
8.
Efficiency of a gas turbine can be increased by increasing the operating temperature. Yttria‐stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used in gas turbine applications. However, above 1200°C, YSZ undergoes significant sintering and CMAS (calcium magnesium alumino silicate) infiltration. New ceramic materials of rare earth zirconate composition such as gadolinium zirconate (GZ) are promising candidates for thermal barrier coating applications (TBC) above 1200°C. Suspension plasma spray of single‐layer YSZ, double‐layer GZ/YSZ, and a triple‐layer TBC comprising denser GZ on top of GZ/YSZ TBC was attempted. The overall coating thickness in all three TBCs was kept the same. Isothermal oxidation performance of the three TBCs along with bare substrate and bond‐coated substrate was investigated for time intervals of 10 h, 50 h, and 100 h at 1150°C in air environment. Weight gain/loss analysis was carried out by sensitive weighing balance. Microstructural analysis was carried out using scanning electron microscopy (SEM). As‐sprayed single‐layer YSZ and double‐layer GZ/YSZ showed columnar microstructure, whereas the denser layer in the triple‐layer TBC was not columnar. Phase analysis of the top surface of as‐sprayed TBCs was carried out using XRD. Porosity measurements were made by water intrusion method. In the weight gain analysis and SEM analysis, multilayered TBCs showed lower weight gain and lower TGO thickness compared to single‐layer YSZ.  相似文献   

9.
Aero-engines operating in dust-laden environments often encounter a lot of dust/sand that causes a severe problem to the TBCs by means of erosion. As the turbine entry temperatures are rising, molten sand is also a big concern to the life-time of TBCs.This paper deals with the TBC behavior under the combined influence of erosion and corrosion attack. Variations in TBC morphology, CMAS infiltration time and CMAS composition and their influence on the erosion resistance at room temperature were investigated. Two different EB-PVD 7YSZ morphologies consisting of a different porosity arrangement were tested in the erosion/corrosion regime. The more ‘Feathery’ structure has a better resistance to erosion compared to a more columnar ‘Normal’ structure, which leads to less degradation of the TBC. However, under the influence of CMAS infiltration the effect was found to be reversed. In general, CMAS-infiltrated EB-PVD TBCs exhibit a higher erosion resistance than the non-infiltrated ones.  相似文献   

10.
《Ceramics International》2022,48(24):36450-36459
In the present work, YSZ TBCs and 10 wt% CeO2-doped YSZ thermal barrier coatings (CeYSZ TBCs) were prepared via atmospheric plasma spraying(APS) respectively, whereupon high temperature oxidation experiment was carried out at 1100 °C to compare the high temperature oxidation behavior and mechanism of the two TBCs. The results showed that the doping of CeO2 reduced the porosity of YSZ TBCs by 23%, resulting in smaller oxidation weight gain and lower TGO growth rates for CeYSZ TBCs. Besides, the TGO generated in CeYSZ TBCs was obviously thinner and there were fewer defects inside it. For YSZ TBCs, as the oxidation process proceeded, Al, Cr, Co and Ni elements in the bonding coating were oxidized successively to form loose and porous spinel type oxides (CS), which was apt to cause the spalling failure of TBCs. While, the Al2O3 layer of the TGO generated in CeYSZ TBCs ruptured later than that in YSZ TBCs, which delayed the oxidation of Cr, Co, and Ni elements and the formation of CS accordingly. Therefore, CeO2 doping can effectively improve the high temperature oxidation resistance of YSZ TBCs.  相似文献   

11.
Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come as a result of molten salt effect on the coating–gas interface. Hot corrosion behavior of three types of plasma sprayed TBCs was evaluated: usual CSZ, layer composite of CSZ/Micro Al2O3 and layer composite of CSZ/Nano Al2O3 in which Al2O3 was as a topcoat on CSZ layer. Hot corrosion studies of plasma sprayed thermal barrier coatings (TBCs) were conducted in 45 wt% Na2SO4+55 wt% V2O5 molten salt at 1050 °C for 40 h. The graded microstructure of the coatings was examined using scanning electron microscope (SEM) and X-ray diffractometer (XRD) before and after hot corrosion test. The results showed that no damage and hot corrosion products was found on the surface of CSZ/Nano Al2O3 coating and monoclinic ZrO2 fraction was lower in CSZ/Micro Al2O3 coating in comparison with usual CSZ. reaction of molten salts with stabilizers of zirconia (Y2O3 and CeO2) that accompanied by formation of monoclinic zirconia, irregular shape crystals of YVO4, CeVO4 and semi-cubic crystals of CeO2 as hot corrosion products, caused the degradation of CSZ coating in usual CSZ and CSZ/Micro Al2O3 coating.  相似文献   

12.
Samarium strontium aluminate (Sm2SrAl2O7-SSA) and Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) were developed on NiCrAlY bond coated Inconel 718 superalloy substrate using air plasma spray process. The hot corrosion study was conducted in simulated gas turbine environments (molten mixtures of 50?wt% Na2SO4 + 50?wt% V2O5 and 90?wt% Na2SO4 + 5?wt% V2O5 + 5?wt% NaCl) for two different temperatures of 700 and 900?°C. A developed SSA TBCs showed about 8% and 22% lower lifetime at 700 and 900?°C, respectively than YSZ TBCs in 50?wt% Na2SO4 +?50?wt% V2O5 (vanadate). The hot corrosion life of SSA TBCs being found about 13% and 39% lower than YSZ TBCs in 90?wt% Na2SO4 +?5?wt% V2O5 +?5?wt% NaCl (chloride) at 700 and 900?°C, respectively. X-ray diffraction results showed the formation of SmVO4, SrV2O6, and SrSO4 as a major hot corrosion product in 50?wt% Na2SO4 +?50?wt% V2O5 and 90?wt% Na2SO4 +?5?wt% V2O5 +?5?wt% NaCl environments respectively for SSA TBCs. Similarly, YSZ TBCs also showed YVO4 as hot corrosion product in vanadate and chloride environments. Both the TBCs suffer a more severe hot corrosion attack in chloride environment at 900?°C. The leaching of Sr2+ and Y3+ ions from SSA and YSZ respectively play a vital role in the destabilization of coating in vanadate and chloride environments at 700 and 900?°C. In both SSA and YSZ TBCs, the leaching of ion has significantly low influence as compared to attack by chloride ions at the bond coat-top coat interface in the presence of chloride environment. The hot corrosion resistance of SSA TBCs was improved three times higher in the presence of MgO and NiO inhibitor in vanadate environment at 900?°C mainly due to the formation of a stable Ni3V2O8 phase at the surface.  相似文献   

13.
Shot peening might be a potential technology to optimize the interface microstructure, plays a critical role on failure behaviors, of thermal barrier coatings (TBCs). It remains a significant challenge to understand the influence of shot peening on microstructure, oxidation resistance, and thermal shock life. In this work, the Y2O3-stabilized ZrO2 TBCs have been deposited by EB-PVD. The phase, microstructure, thermal performance, and failure mechanism of TBCs have been systemically investigated after shot peening. The shot peening process can improve the planeness of interface and reduce the formation of the cauliflower-liked microstructure in TBCs. After shot peening, the TBC coatings exhibit relatively good isothermal oxidation resistance and high thermal shock life due to the optimization of TGO growth and the thermal stability. The phase transformation, TGO growth, and cracks extension might give rise to the failure of TBCs. This work might guide the investigation of the improvement of interface microstructure and failure behaviors.  相似文献   

14.
Novel ceramic topcoat of Gd2O3–Yb2O3–Y2O3 co-stabilized ZrO2 (GYbYSZ) thermal barrier coatings were fabricated via EB-PVD technique. The phase structural stability, phase constituent, chemical composition, morphology and cyclic oxidation of the thermal barrier coatings (TBCs) were systematically studied. Based on the XRD results, the GYbYSZ ceramics has not undergone phase transformation upon long-term annealing at 1373 K and 1523 K. Although the chemical content of the GYbYSZ ceramic coat deviates from the stoichiometric value, the coating is mostly composed of cubic phase, which is accord with the XRD pattern of the original ingot. A pyramidal-like morphology appears in the microtexture of the column tips and the measured diameters of the pyramids are about 2.5~4 μm. After thermal cycling, the surface of the coating presents a multi-layer structure, which is followed by layer-by-layer spallation. The failure zone of the ceramic coats is possible to occur the interior of the thermally grown oxide (TGO) layer, or within the top ceramic coat at the interface of bond coat/TGO layers. The degradation of GYbYSZ TBCs is primarily attributed to the accumulation and relaxation of residual stress, propagation of vertical through microcracks, the growth rumpling of TGO layer, the ridges of grain boundary and the abnormal oxidation of bond coat.  相似文献   

15.
《Ceramics International》2016,42(3):3959-3964
In this study, the high temperature hot corrosion behavior of a CoWSi/WSi2 composite coating was investigated. Hot corrosion studies were performed on CoWSi/WSi2 coated nickel specimens after exposure to a molten Na2SO4+NaCl salt environment at 900 °C under cyclic conditions. Thermogravimetric technique was used to establish the kinetics of corrosion. XRD and SEM/EDS techniques were used to analyze the corrosion products. The oxide scale formed on the coating surface was complex and the hot corrosion resistance of coating may be attributed to the formation of oxides and spinels of silicon, cobalt and tungsten. Also, NaCl accelerated the degeneration of the coating because of producing the volatile CoCl2 and thereby oxygen and sulfur could easily penetrate into the coatings and caused the formation of internal oxide and sulfide.  相似文献   

16.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

17.
Atmospheric plasma-sprayed (APS) coatings have a layered structure as well as lower strain tolerance and a shorter lifetime than EB-PVD coatings. In this study, TBCs composed of a LaMgAl11O19 (LMA) top coat and a NiCrAlY bond coat were prepared by APS coupled with dry-ice blasting to implant vertical microcracks in the top coat. The thermal cycling lifetime and CMAS corrosion behaviour of LMA-TBCs with pre-implanted vertical microcracks were investigated in detail. The results show that the LMA top coat possesses an improved proportion of vertical microcracks and that the corresponding TBC has an improved thermal cycling lifetime. The vertical microcracks in the top coats, which not only reduce the thermal stress but also improve the strain tolerance of TBCs, dramatically contribute to the improvement in the thermal cycling lifetime. Surprisingly, the CMAS corrosion resistance of LMA-type TBCs with implanted vertical microcracks is better than that of conventional TBCs with a typical layered structure.  相似文献   

18.
《Ceramics International》2021,47(22):31868-31876
Calcium-magnesium-alumina-silicate (CMAS) and molten salt corrosion pose great threats to thermal barrier coatings (TBCs), and recently, a coupling effect of CMAS and molten salt has been found to cause even severer corrosion to TBCs. In this study, the crystallization behavior of CMAS and CMAS+NaVO3 is investigated for potentially clarifying their corrosion mechanisms to TBCs. Results indicated that at 1000 °C and 1100 °C, CMAS was crystallized to form CaMgSi2O6, while at 1200 °C, the crystallization products were CaMgSi2O6, CaSiO3 and CaAl2Si2O8. The introduction of NaVO3 in CMAS reduced the crystallization ability, and as the NaVO3 content increased, glass crystallization occurred at a lower temperature, with crystallization products mainly consisting of CaAl2Si2O8 and CaMgSi2O6. At 1200 °C, CMAS+10 wt% NaVO3 was in a molten state without any crystallization, which suggested that NaVO3 addition in CMAS could reduce its melting point, indicating enhanced penetration ability in TBCs and thus increased corrosiveness.  相似文献   

19.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

20.
《Ceramics International》2023,49(12):20034-20040
In order to reveal the effect of Sc2O3 and Y2O3 co-doping system on the thermal shock resistance of ZrO2 thermal barrier coatings, Y2O3 stabilized ZrO2 thermal barrier coatings (YSZ TBCs) and Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings (ScYSZ TBCs) were prepared by atmospheric plasma spraying technology. The surface and cross-section micromorphologies of YSZ ceramic coating and ScYSZ ceramic coatings were compared, and their phase composition before and after heat treatment at 1200 °C was analyzed. Whereupon, the thermal shock experiment of the two TBCs at 1100 °C was carried out. The results show that the micromorphologies of YSZ ceramic coating and ScYSZ ceramic coating were not much different, but the porosity of the latter was slightly higher. Before heat treatment, the phase composition of both YSZ ceramic coating and ScYSZ ceramic coating was a single T′ phase. After heat treatment, the phase composition of YSZ ceramic coating was a mixture of M phase, T phase, and C phase, while that of ScYSZ ceramic coating was still a single T′ phase, indicating ScYSZ ceramic coating had better T′ phase stability, which could be attributed to the co-doping system of Sc2O3 and Y2O3 facilitated the formation of defect clusters. In the thermal shock experiment, the thermal shock life of YSZ TBCs was 310 times, while that of ScYSZ TBCs was 370 times, indicating the latter had better thermal shock resistance. The difference in thermal shock resistance could be attributed to the different sintering resistance of ceramic coatings and the different growth rates of thermally grown oxide in the two TBCs. Furthermore, the thermal shock failure modes of YSZ TBCs and ScYSZ TBCs were different, the former was delamination, while the latter was delamination and shallow spallation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号