首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(24):34802-34809
Yb2Si2O7 is a popular environmental barrier coating; however, it decomposes into Yb2SiO5 in high-temperature steam environments. The thermal mismatch between Yb2Si2O7 and Yb2SiO5 leads to the cracking and failure of the disilicate coating via oxidation. Dispersing SiC nanofillers into the Yb2Si2O7 matrix is suggested to maintain the Yb2Si2O7 matrix and promote crack self-healing. This study is aimed at clarifying the effect of water vapor on the self-healing ability of such composites. X-ray diffraction analysis and scanning electron microscopy were used to monitor the surface composition and the crack formation, respectively, in 10 vol% SiC-dispersed Yb2Si2O7 composites. Annealing at temperatures higher than 750 °C in air or in a water vapor rich atmosphere led to strength recovery and the self-healing of indentation-induced surface cracks owing to volume expansion during the oxidation of SiC. The self-healing effect was influenced by the oxidation time and temperature. Rapid diffusion of H2O as an oxidizer into the SiO2 layer promoted self-healing in a water vapor rich atmosphere. However, accelerated oxidation at temperatures higher than 1150 °C formed bubbles on the surface. Fabricating composites with a small amount of Yb2SiO5 will be a solution to these problems.  相似文献   

2.
《Ceramics International》2020,46(13):21328-21335
Plasma spraying of multicomponent materials produces shifts in coating composition associated with differential vaporization of constituent elements within the strong thermal gradients of the process. This effect is quite noticeable in rare-earth silicates which are now widely being employed as Environmental Barrier Coatings (EBCs) for SiC based ceramic components of turbine engines. Of particular interest is the preferential volatilization of SiO2 during thermal plasma spraying Yb2Si2O7 (ytterbium disilicate) coatings which leads to the deviation from stoichiometry of the desired disilicate composition resulting in a mixed phase coating consisting of Yb2Si2O7 plus Yb2SiO5 (ytterbium monosilicate). Recent work has shown that presence of monosilicate can be beneficial as its evolution from amorphous, metastable to stable crystalline phase can lead to crack healing during high temperature exposure, however, careful control of the chemistry and architecture may be needed. In this work a 50/50 mol% Yb2Si2O7–Yb2SiO5 composite coating has been targeted through in situ decomposition during plasma spray from stoichiometric Yb2Si2O7 powder. The as sprayed amorphous coating reverts to crystalline upon thermal treatment passing through a metastable state identified by XRD and Raman spectroscopy. The transition to the final stable phases results in a mixed phase coating comprising of 46/54 mol% Yb2Si2O7–Yb2SiO5 composite that is thermo-mechanically stable with the underlying bond coated silicon coated SiC substrate.  相似文献   

3.
Plasma spray-physical vapor deposition (PS-PVD) was used to prepare tri-layer environmental barrier coatings (EBCs) Si/mullite/Yb2SiO5 on SiCf/SiC substrate. Isothermal oxidation tests of EBCs were performed at 1300 ℃ for 1000 h. The thermochemical and thermomechanical interface interaction among EBCs were investigated. The results show that more dense EBCs can be obtained through PS-PVD process, which is attributed to the mixed deposition of liquid/gas states. After isothermal oxidation, many pores were observed in the Yb2SiO5 coating near the interface of Yb2SiO5/mullite coating, which results from the diffusion of Yb2O3 phase dissociated from Yb2SiO5 into mullite coating at high temperature. In the mullite coating, the Yb2O3 reacted with Al2O3 generating rod-like Yb3Al5O12 phase. Additionally, due to the thermal expansion mismatch and high temperature oxidation, cracks were formed at the interfaces of mullite/Si coating. Those interface cracks resulted in buckling in the mullite coating.  相似文献   

4.
《Ceramics International》2022,48(16):23127-23136
To improve high-temperature bearing capability of coatings, novel agglomerated Si-HfO2 powders were prepared by adding HfO2 powders into original Si powders by spray drying method. Three-layer environmental barrier coatings (EBCs) with Si-HfO2 bond layer, Yb2Si2O7 intermediate layer and Yb2SiO5 surface layer were prepared on SiC ceramic substrates by atmospheric plasma spraying (APS). The high temperature properties of coatings were systematically investigated. The results indicated that the coatings had good high temperature oxidation resistance, and remained intact after being oxidized or steam corrosion at 1400 °C for 500 h, so the addition of HfO2 improved the thermal cycling performances of the coating. The HfO2 in Si bond coating could effectively inhibit the growth of thermal grown oxide at high temperatures. This work indicates that the high temperature properties of the coatings are improved by this novel EBCs using the novel agglomerated Si-HfO2 powders.  相似文献   

5.
A new tri‐layer Yb2SiO5/Yb2Si2O7/Si coating was fabricated on SiC, C/SiC, and SiC/SiC substrates, respectively, using atmospheric plasma spray (APS) technique. All coated samples were subjected to thermal shock test at 1350°C. The evolution of phase composition and microstructure and thermo‐mechanical properties of those samples before and after thermal shock test were characterized. Results showed that adhesion between all the 3 layers and substrates appeared good. After thermal shock tests, through microcracks which penetrated the Yb2SiO5 top layer were mostly halted at the Yb2SiO5‐Yb2Si2O7 interface and no thermal growth oxide (TGO) was formed after 40‐50 quenching cycles, implying the excellent crack propagation resistance of the environmental barrier coating (EBC) system. Transmission electron microscopy analysis confirmed that twinnings and dislocations were the main mechanisms of plastic deformation of the Yb2Si2O7 coating, which might have positive effects on crack propagation resistance. The thermal shock behaviors were clarified based on thermal stresses combined with thermal expansion behaviors and elastic modulus analysis. This study provides a strategy for designing EBC systems with excellent crack propagation resistance.  相似文献   

6.
Environmental barrier coatings for SiC/SiC composites are limited by the melting temperature of the Si bond coating near 1414 °C. Systems without a bond coating may be required for future turbine applications where material temperatures go beyond 1350 °C. Enhanced roughness SiC substrates were developed to assess coating adhesion without the bond coating. Two EBCs with different YbMS/YbDS ratios were produced via modified plasma spraying parameters. Coating microstructure, thermal expansion, and modulus were measured for comparison of coating properties. Cyclic steam exposures at 1350 °C were performed to assess oxidation resistance. The EBC with increased concentration of Yb2SiO5 secondary phase displayed a higher CTE, which is typically expected to decrease adhesion lifetimes due to an increase in stress upon thermal cycling. Yet, the EBC chemistry with increased Yb2SiO5 concentration was able to experience longer cycling times prior to coating delamination, likely due to interface interactions with the substrate and the thermally grown oxide.  相似文献   

7.
Rare‐earth monosilicates (RE2SiO5, RE: rare‐earth elements), such as Yb2SiO5, have been developed for potential application as environmental barrier coating (EBC) materials. Yb2SiO5 coating would experience microstructure evolution under high‐temperature environment and accordingly its thermomechanical properties would be altered. In this study, Yb2SiO5 coating was fabricated by atmospheric plasma spray technique. The phase stability and microstructure change before and after thermal aging at 1300°C, 1400°C, and 1500°C were investigated. The changes in mechanical and thermal properties were characterized. The results showed that the as‐sprayed coating was mainly composed of Yb2SiO5 with a small amount of Yb2O3 and amorphous phase. Defects in the coating, including interfaces, pores, and microcracks, were greatly reduced with grain growth after thermal treatment. Thermal aging significantly modified the thermal and mechanical properties of the coating. The average CTE was increased by 13.1%, and the hardness and elastic modulus was increased by 42.4% and 49.4%, respectively, after thermal aging at 1500°C for 50 hour. The thermal conductivity of thermal‐aged coating was much higher than that of the as‐sprayed coating, which was still less than 2 W/(m·K). The influence of coating microstructure on the properties was analyzed and related to the failure mechanism of EBCs.  相似文献   

8.
In this study, nanostructured and conventional Yb2SiO5 coatings were prepared by atmospheric plasma. The microstructure and nanomechanical properties of these coatings were compared before and after heat treatment. The results show that the nanostructured Yb2SiO5 coatings have a mono-modal distribution, and the conventional Yb2SiO5 coatings have a bimodal distribution. Both types of coatings had improved nanomechanical properties after heat treatment. However, the increased elastic modulus and nanohardness of the nanostructured Yb2SiO5 coating were more apparent than those of the conventional Yb2SiO5 coatings. The nanostructured Yb2SiO5 coating had a higher elastic modulus than the conventional Yb2SiO5 coating, reflecting its high density. Subsequently, the microscopic morphology and micromechanical properties of the coatings were analyzed after heat treatment. Defects in the coatings, including pores, and microcracks, were significantly reduced with grain growth after thermal treatment, and the nanostructured Yb2SiO5 coatings had improved healing ability and micro-mechanical properties.  相似文献   

9.
Yb2Si2O7 coatings were deposited on Si/SiC substrates by atmospheric plasma spray (APS). The different power and plasma chemistries used in this work produced mainly amorphous crack-free coatings with compositions shifted to lower SiO2 content with higher power and H2 flow. Differences in microstructure and thermomechanical properties (crystallization behavior, thermal expansion coefficient and thermal conductivity) of as-deposited and thermally treated coatings were directly related to the evolution from amorphous to crystalline phases. A Yb2SiO5 metastable phase was identified after thermal treatments at temperatures ~ 1000 °C that transformed to its stable isomorph at 1220 °C. This transformation, followed by the growth of the crystal cell volume, promoted the coating expansion and the “healing” of microcracks present in the amorphous as-sprayed coating.  相似文献   

10.
《Ceramics International》2023,49(4):5748-5759
To clarify the role of the coating interface geometry and thermally grown oxide (TGO) layer in the failure of environmental barrier coatings (EBCs) and to further understand the cracking and spalling mechanisms of coatings, in this study, the thermomechanical properties of the multilayer coating system (Yb2SiO5/Yb2Si2O7/Si), the morphology of the coating interface and the influence of the oxide layer on the local stresses during cooling were considered based on a random rough interface geometry model. The results showed that the rough geometry increased the magnitude of residual stresses at the interface and that the stress distribution away from the interface was less affected than the coating without roughness. The cracks on the outer surface of the Yb2SiO5 layer initiate in the valley region and spread with a stress value independent of the TGO thickness, and this failure may occur by cracking under tensile stress. The overall stress intensity at the TOP/EBC interface was lower than that at the upper surface of the TOP layer. The presence of TGO increased the magnitude of residual stresses in the BC and EBC layers, which caused cracks at the TGO/BC and TGO/EBC interfaces to occur at opposite locations. The phase change of the TGO layer from β-cristobalite to α-cristobalite cause a rapid increase in the overall level of coating stress, which may be a direct factor in coating failure. The calculation results provide a theoretical basis for the coating design and manufacturing process.  相似文献   

11.
An air plasma spray process has been used to deposit tri-layer environmental barrier coatings consisting of a silicon bond coat, a mullite inter-diffusion barrier, and a Yb2SiO5 top coat on SiC substrates. Solidified droplets in as-deposited Yb2SiO5 and mullite layers were discovered to be depleted in silicon. This led to the formation of an Yb2SiO5 + Yb2O3 two-phase top coat and 2:1 mullite (2Al2O3*SiO2) coat deposited from 3:2 mullite powder. The compositions were consistent with preferential silicon evaporation during transient plasma heating; a consequence of the high vapor pressure of silicon species at plasma temperatures. Annealing at 1300 °C resulted in internal bond coat oxidation of pore and splat surfaces, precipitation of Yb2O3 in the top coat, and transformation of 2:1 mullite to 3:2 mullite + Al2O3. Mud-cracks were found in the Yb2SiO5 layer and in precipitated Al2O3 due to the thermal expansion mismatch between these coating phases and the substrate.  相似文献   

12.
《Ceramics International》2022,48(14):19990-19999
Due to the high-input power compared to atmospheric plasma spraying (APS), plasma spray-physical vapor deposition (PS-PVD) can primarily achieve a splat-like deposition, allowing for the preparation of high-density environmental barrier coatings (EBCs). In this paper, dense Yb2SiO5-based coatings are prepared by PS-PVD at different substrate temperatures. It was found that the coating deposited at the substrate temperature of 700 °C contained a large amount of silicon-rich amorphous phase. When the substrate temperature increased to 1100 °C and a slow cooling process after deposition was involved, a coating with high crystallinity of ~77% and low porosity of less than ~2% was achieved. Phase evolution of the coatings was studied by a semi-in-situ high-temperature X-ray diffractometer. During the heating process, metastable phases X1-Yb2SiO5 and α-Yb2Si2O7 emerged and transformed into stable phases following high-temperature treatment. Furthermore, the effects of long-term thermal aging at 1300 °C on the microstructure, phase composition, thermal conductivity, and hardness of the coating prepared at the substrate temperature of 1100 °C were found to be limited.  相似文献   

13.
Rare-earth monosilicate (RE2SiO5) have been considered to be a promising material for the environmental barrier coating because of their superior thermal and mechanical properties. However, the water vapor corrosion resistance of single-component RE-silicate materials, such as Y2SiO5, should be further improved. The high-entropy design is one of the most suitable methods to enhance the corrosion resistance for single-component RE-silicate materials. In this work, the multicomponent RE-silicate ((Lu0.25Yb0.25Er0.25Y0.25)2SiO5, (4HES)) and single-component RE-silicate (Y2SiO5) coatings were investigated with regard to its water vapor corrosion behaviors at 1350 °C for 300 h. A thinner and denser corrosion layer was generated in the 4HES coating, indicating that the 4HES coating possessed better corrosion resistance than the Y2SiO5 coating. The improved corrosion resistance is attributed to the better hydrophobic property as well as the more stable crystal structure of the rare-earth oxide and 4HES phase which was resulted from the high-entropy design.  相似文献   

14.
Thermochemical stability and microstructural evolution of Yb2Si2O7 was studied in high-temperature high-velocity water vapor at temperatures between 1200–1400 °C. Two reactions were shown to occur in the steam environment: Yb2Si2O7 reaction to form Yb2SiO5, and further Yb2SiO5 reaction to form Yb2O3. Parabolic rates of both reactions were observed, and similar reaction enthalpies were determined for each reaction; 207 kJ/mol and 205 kJ/mol, respectively. Densification of the product phase Yb2SiO5 shut off pore connectivity for gas transport to the reaction interface at gas velocities exceeding 115?125 m/s and for temperatures of 1300 °C and 1400 °C, resulting in reduced reaction rates at higher velocities. Outward gas diffusion by a silicon hydroxide species is predicted to govern ytterbium silicate reactions with high temperature water vapor. Microstructure changes at high temperatures and velocities were shown to greatly impact the long-term stability of Yb2Si2O7.  相似文献   

15.
A novel kind of dense MoSi2-SiC-Si coating was prepared on the surface of graphite substrate by slurry dipping and vapor silicon infiltration process. Mo-SiC-C precoating was fabricated via slurry dipping method, and then MoSi2-SiC-Si coating with dense structure consisting of Si, MoSi2 and SiC was obtained by vapor silicon infiltration process. The isothermal oxidation tests at temperatures from 800 to 1600 °C and TGA test from room temperature to 1500 °C were used to evaluate the oxidation resistance ability of the MoSi2-SiC-Si coating. The experimental results indicate that the prepared coating has good oxidation protection ability at a wide temperature range from room temperature to 1600 °C. Meanwhile, the oxidation of the coated samples is a weight gain process at temperatures from 800 to 1500 °C due to the formed SiO2 layer on the surface of coating. After oxidation for 220 h at 1600 °C, the weight loss of the coated sample was only 0.96%, which is considered to be the excessive consumption of the outer coating and the appearance of defects in the coating. Two layers can be observed in the coating after oxidation, namely, SiO2 layer and MoSi2-SiC-Si layer.  相似文献   

16.
Yb2SiO5 (ytterbium monosilicate) top coatings and Si bond coat layer were deposited by air plasma spray method as a protection layer on SiC substrates for environmental barrier coatings (EBCs) application. The Yb2SiO5-coated specimens were subjected to isothermal heat treatment at 1400 °C on air for 0, 1, 10, and 50 h. The Yb2SiO5 phase of the top coat layer reacted with Si from the bonding layer and O2 from atmosphere formed to the Yb2Si2O7 phase upon heat treatment at 1400 °C. The oxygen penetrated into the cracks to form SiO2 phase of thermally grown oxide (TGO) in the bond coat and the interface of specimens during heat treatment. Horizontal cracks were also observed, due to a mismatch of the coefficient of thermal expansion (CTE) between the top coat and bond coat. The isothermal heat treatment improves the hardness and elastic modulus of Yb2SiO5 coatings; however, these properties in the Si bond coat were a little bit decreased.  相似文献   

17.
The mullite and ytterbium disilicate (β-Yb2Si2O7) powders as starting materials for the Yb2Si2O7/mullite/SiC tri-layer coating are synthesized by a sol–gel method. The effect of SiC whiskers on the anti-oxidation properties of Yb2Si2O7/mullite/SiC tri-layer coating for C/SiC composites in the air environment is deeply studied. Results show that the formation temperature and complete transition temperature of mullite were 800–1000 and 1300°C, respectively. Yb2SiO5, α-Yb2Si2O7, and β-Yb2Si2O7 were gradually formed between 800 and 1000°C, and Yb2SiO5 and α-Yb2Si2O7 were completely transformed into β-Yb2Si2O7 at a temperature above 1200°C. The weight loss of Yb2Si2O7/(SiCw–mullite)/SiC tri-layer coating coated specimens was 0.15 × 10−3 g cm−2 after 200 h oxidation at 1400°C, which is lower than that of Yb2Si2O7/mullite/SiC tri-layer coating (2.84 × 10−3 g cm−2). The SiC whiskers in mullite middle coating can not only alleviate the coefficient of thermal expansion difference between mullite middle coating and β-Yb2Si2O7 outer coating, but also improve the self-healing performance of the mullite middle coating owing to the self-healing aluminosilicate glass phase formed by the reaction between SiO2 (oxidation of SiC whiskers) and mullite particles.  相似文献   

18.
In order to improve the oxidation resistance of carbon/carbon composites at intermediate temperatures, a novel double-layer SiC/indialite coating was prepared by a simple and low-cost method. The internal SiC transition layer was prepared by pack cementation and the external indialite glass–ceramic coating was produced by in situ crystallization of ternary MgO–Al2O3–SiO2 glass. The microstructures and morphologies of coating were determined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). Oxidation resistance of the as-coated C/C composites was evaluated in ambient air at temperature from 800 °C to 1200 °C. Nearly neglectable mass loss was measured after 100 h isothermal oxidation test, indicating that SiC/indialite coating possesses excellent oxidation protection ability. The as-coated samples have a good thermal shock resistance and no obvious damage was found in the coating even after suffered more than 11 thermal cycles between test temperature and room temperature. The oxidation protection mechanism of this coating was also discussed.  相似文献   

19.
Surface modification with silica-based coating is widely used to attain high performance and construct special functions for thin films. In this paper, dopamine (DA) and tetraethoxysilane (TEOS) were used as initial building blocks to construct a biomimetic hydrophilic and mechanical robust silica-based coating onto polypropylene (PP) microporous film. It was found that the final DA/TEOS coating can be steadily immobilized onto PP film and greatly improve the hydrophilic property of PP film as evidenced by the decreased contact angle. Furthermore, the coating structures were comparatively investigated through one-step synthesis and two-step synthesis of DA and TEOS with a fixed ratio. Interestingly, the one-step synthesized coating possesses a loosely-packed layer with dispersed SiO2 nanoparticles within polydopamine matrix while the two-step synthesized coating shows a high loading of SiO2 nanoparticles. As a result, the two-step approach leads to a continuous SiO2 layer with abundant hydroxyl groups, indicating a better lyophilic property and depressed thermal shrinkage. In addition, the concentric SiO2 layer results in a significant increase of the tensile strength of PP films.  相似文献   

20.
Environmental barrier coatings (EBCs) have been widely studied for the protection of ceramic matrix composites (CMCs). The phase transition of silica thermal growth oxide (TGO) has been proved to be an important factor for the durability of EBCs. Yb2O3 could react with SiO2 TGO and form silicate which may improve the stability of TGO and prolong the service life of EBCs. In the present work, Si coatings doped with different contents of Yb2O3 were fabricated by vacuum plasma spray. The oxidation behaviors of the composite coatings were evaluated at 1350 °C and compared with the pure Si coating. The evolution of phase composition and microstructure of mixed thermal growth oxide (mTGO) was characterized in detail. The results showed that the newly formed oxidation product, namely Yb2Si2O7, could reduce the vertical cracks in mTGO layer and the mTGO/coating interface cracks, leading to a better binding performance of the mTGO layer. The oxidation mechanisms of the Yb2O3-doped Si coatings were analyzed based on microstructure and phase composition observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号