首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2023,49(10):15145-15153
In surface-enhanced Raman scattering (SERS) applications, the MAX phase is typically acid etched to address deficiencies, while the more accessible alkali corrosion products are neglected. The woolen ball-like K2Ti8O17 (KTO) nanomaterial is synthesized via an efficient hydrothermal surface corrosion reaction between KOH solution and MAX phase Ti2AlN, which exhibits excellent SERS capabilities to the contaminating dyes. The enhancement factors are 2.33 × 105, 1.04 × 105 and 2.22 × 105 with lowest limits of detection of 10−7 M, 10−6 M and 10−7 M for crystal violet, rhodamine 6G and methylene blue, respectively, indicating that KTO is a highly desired candidate of SERS substrate material. Meanwhile, KTO shows excellent SERS performance for chrysoidine in simulated seawater, which proves its practical application value. The excellent SERS performance of KTO is attributed to the charge transfer mechanism, which is made possible by the appropriate energy band structure and the robust adsorption capacity. In conclusion, a novel method for the synthesis of KTO is investigated and its reaction process and enhancement mechanism are exhaustively characterized and described. The woolen ball-like KTO exhibits remarkable SERS properties and potential applications.  相似文献   

2.
《Ceramics International》2020,46(13):21482-21488
Two-dimensional transition metal carbide (MXene) is a promising electrode material for supercapacitors because of its excellent electrochemical properties. Here, we report a controllable and facile strategy to prepare a freestanding and flexible N-doped Ti3C2Tx (N–Ti3C2Tx) film electrode with a hydrothermal method using hydrazine hydrate (N2H4∙H2O) as a nitrogen source. At a scan rate of 2 mV s−1, the N–Ti3C2Tx film electrode exhibits a high specific capacitance of 340 F g−1 and no capacitance degradation after 10,000 cycles in 1 M H2SO4 electrolyte. These results show that the N–Ti3C2Tx film could be used as an outstanding electrode material for high-performance supercapacitors. The operation of hydrazine treatment provides a more practical and convenient experimental method for N-doping.  相似文献   

3.
In this paper, we have developed a mild and facile approach using KOH solution as etchants to corrode Ti3SiC2 at room temperature, fabricating novel Ti3C2(OH)2/K2Ti8O17 nanocomposites with open network structures and abundant surface functional groups. The as-produced products obtain the excellent surface enhanced Raman scattering (SERS) performance in the determination of crystal violet (CV), rhodamine 6G (R6G) and methylene blue (MB) dye molecules. The enhancement factors of the three can be calculated to be 3.98 × 105, 1.78 × 105 and 5.27 × 105, and the Raman signals can be detected at the concentrations as low as 10?6 M, 10?8 M and 10?6 M, respectively, suggesting the potential for reliable SERS substrates. In this regard, this work provides a new strategy for exploring and synthesizing MAX phase-derived nanomaterials as promising SERS substrates for high-sensitive molecular detection.  相似文献   

4.
《Ceramics International》2022,48(14):20324-20331
As one of the typical MXenes materials, 2D Ti3C2Tx has attracted extensive attention in the field of energy storage. However, due to the restacking problem of Ti3C2Tx nanosheets, the electrochemical performance of Ti3C2Tx is unsatisfactory. In this paper, a scheme is proposed to obtain 3D aerogel with 1D channels by directional freeze drying of Ti3C2Tx. With the help of the unidirectional channels, the 3D Ti3C2Tx/Sodium alginate (SA) aerogel can effectively solve the stacking problem of Ti3C2Tx nanosheets, and it also accelerates the diffusion of ions. The Ti3C2Tx/SA-5 electrode can still reach the mass capacitance of 284.5 F g?1 and the areal capacitance of 4030.4 mF cm?2 at 2 mV s?1 when the loading is 14.2 mg cm?2 in 1 M H2SO4 electrolyte. In addition, the electrode showed good cycling performance without capacitor degradation after 20,000 cycles at 50 mV s?1. These results suggest that by using the strategy of building special 3D structure of 2D MXene with 1D unidirectional channels, high performance supercapacitor electrodes with high mass loading can be realized.  相似文献   

5.
《Ceramics International》2021,47(18):25531-25540
Ti3C2Tx exhibits excellent electromagnetic (EM) shielding and electrochemical properties. However, the inherent re-stacking tendency and easy oxidation of Ti3C2Tx limit its further application. In this study, a multi-walled carbon nanotube/polyaniline composite (CNT/PANI, denoted as C–P) was introduced into Ti3C2Tx nanosheets to obtain a Ti3C2Tx–CNT/PANI composite (T@CP). Owing to the integrated effects of Ti3C2Tx and C–P, the contribution of absorption was significantly improved, which finally enhanced the EM shielding performance of T@CP. The highest total EM shielding effectiveness (SET) was close to 50 dB (49.8 dB), which was substantially higher than that of pure Ti3C2Tx (45.3 dB). Moreover, T@CP demonstrated outstanding supercapacitive performance. The specific capacitance of T@CP (2134.5 mF/cm2 at 2 mV/s) was considerably higher than that of pure Ti3C2Tx (414.3 mF/cm2 at 2 mV/s). These findings provide a new route for the development of high-efficiency Ti3C2Tx-based bifunctional EM shielding and electrochemical materials.  相似文献   

6.
《Ceramics International》2022,48(3):3884-3894
Different kinds of two-dimensional hybrid electrodes have high theoretical capacitance and energy density. However, the origin of the electrochemical storage mechanism still remains elusive in alkaline, acid and neutral electrolytes. Herein, the interstratification-assembled Ti3C2Tx MXene/NiCo-LDHs electrodes were successfully prepared and studied in different electrolytes by in-situ Raman spectroscopy. The results show that H2O molecules in neutral electrolyte combine with –OH at the end of Ti3C2Tx MXene during charging, and debonding occurs during discharge. Similarly, this reaction also occurs in the discharge process with NiCo-LDHs and provides smaller pseudocapacitance characteristics. Although this pseudocapacitance reaction also occurs in acidic and alkaline electrolytes, however, the difference is that the hydrogen ions will promote the electrochemical performance of Ti3C2Tx MXene and has a certain corrosion consumption effect on NiCo-LDHs, but generally improve the electrochemical performance of Ti3C2Tx MXene/NiCo-LDHs. Interestingly, the OH? in alkaline electrolyte can promote the electrochemical performance of NiCo-LDHs, and produce a new electrochemical reaction with –F between the layers of Ti3C2Tx MXene, which greatly improves the overall electrochemical performance of this hybrid electrodes. As a result, Ti3C2Tx MXene/NiCo-LDHs electrodes have the best electrochemical performance in alkaline electrolyte with capacitance of 283 F g?1, energy density of 14.2 Wh kg?1 and power density of 3007.1 W kg?1. This work lays a foundation for the preparation of high-performance two-dimensional hybrid electrochemical energy storage devices.  相似文献   

7.
A new bifunctional intelligent nanosensing platform based on graphene-like titanium carbide MXene (Ti2C MXene)/Au–Ag nanoshuttles (NSs) for both electrochemical and surface-enhanced Raman scattering (SERS) intelligent analysis of ultra-trace carbendazim (CBZ) residues in tea and rice coupled with machine learning (ML) was successfully designed. Ti2C MXene was synthesized by selectively etching Al layers of Ti2AlC with hydrofluoric acid and high-temperature calcination. Ti2C MXene/Au–Ag NSs prepared by the ultrasonic dispersion of graphene-like Ti2C MXene into Au–Ag NSs solution under dark conditions displayed large and rough surface, enhanced conductivity, excellent electrochemical response, prominent Raman enhancement, and high stability. The ML via different algorithms such as artificial neural network, support vector machine, and relevance vector machine (RVM) for the intelligent analysis of CBZ was contrasted and discussed. RVM displayed more superiority for the electrochemical analysis of CBZ in a wide linear range of 0.006 – 9.8 μM with low limit of detection (LOD) of 0.002 μM and SERS detection of CBZ in the wide linear range of 0.033 – 10 μM with low LOD of 0.01 μM. This will provide a new bifunctional intelligent sensing platform via different ML algorithms for improving accuracy of sensor via mutual verification of two or more methods of detection and a new bifunctional nanosensing platform based on the development of graphene-like nanohybrid for food and agro-products safety.  相似文献   

8.
《Ceramics International》2022,48(11):15721-15728
Developing a new strategy to effectively prevent the restacking of MXene nanosheets will have significant impacts on designing flexible supercapacitor electrodes. Herein, a novel Ti3C2Tx/polyvinyl alcohol (PVA) porous sponge with 3D interconnected structures is prepared by sol-gel and freeze-dried methods. This Ti3C2Tx/PVA porous sponge is used as the template of in-situ polyaniline (PANI) polymerization, and the fabricated PANI@Ti3C2Tx/PVA hydrogel composite is applied as flexible supercapacitors electrodes. 1D conductive polymer chains PVA could increase the interlayer spacing of Ti3C2Tx nanosheets, which is beneficial to expose more electrochemical active sites. The supercapacitor based on PANI@Ti3C2Tx/PVA hydrogel composite exhibits the coexistence of double-layer capacitance and pseudocapacitance behavior. This supercapacitor shows a maximum areal specific capacitance of 103.8 mF cm?2 at 2 A m?2, and it also exhibits a maximum energy density of 9.2 μWh·cm?2 and an optimum power density of 800 μW cm?2. The capacitance of this supercapacitor is almost not change under different bending angles. Moreover, 99% capacitance retention is achieved after 10 000 charge/discharge cycles of the supercapacitor. The synergistic effect between PANI and Ti3C2Tx/PVA composite may improve the number of reactive sites and provide efficient channels for ion diffusion/electron transport.  相似文献   

9.
《Ceramics International》2023,49(15):24895-24903
In this paper, we prepared ECAs (electrical conductive adhesives) with high electrical conductivity by using Ag-coated copper powder and M − II (Ti3C2Tx/Ag powder) as conductive filler. M-Ⅰ (Ti3C2Tx) and M-Ⅱ were prepared by acid etching and hydrothermal methods, respectively, and the electrochemical properties of M-Ⅱ and the effects of different contents of M-Ⅱ on the conductivity of ECAs were investigated. M − II has a unique reticular structure which helps to create conductive pathways, and its high specific surface area provides a large number of active sites for charge storage, resulting in increased electrical conductivity. The experimental results show that the best conductivity is achieved when the M-Ⅱ powder content is 1.2%, with a volume resistivity of 4.84 × 10−6 Ω m, at which time the Ag-coated Cu powder content is 69.8%. It has been shown in many studies that only when Ag-coated copper powder content is 70%–80%, the resistivity reaches about 10−6 Ω m. This work showed that adding a small amount of M − II and reducing the amount of Ag-coated copper powder could maintain the high electrical conductivity of ECAs.  相似文献   

10.
Ti3C2Tx is a promising intercalation-type electrode material for capacitive deionization (CDI). However, Ti3C2Tx, obtained from traditional synthesized Ti3AlC2, is with large particle size and undersized interlayer space, which can easily lead to the longer ion diffusion path, fewer adsorption sites, and higher ion diffusion barrier in CDI process. In this work, subsize and Na+ intercalated Ti3C2Tx (Na+-Ti3C2Tx-MS) was prepared by HF etching KCl-assisted molten-salt synthesized Ti3AlC2 and following NaOH treatment. The Na+-Ti3C2Tx-MS achieves a high electrosorption capacity of 14.8 mg/g and a high charge efficiency of 0.81 at the applied voltage of 1.2 V in 100 mg/L NaCl solution. Besides, the stable desalination performance of Na+-Ti3C2Tx-MS has been confirmed. The superior performance of Na+-Ti3C2Tx-MS can be attributed to the subsize particle and larger interlayer space. Both two factors can effectively increase ions adsorption sites, shorten diffusion path lengths, and reduce diffusion barriers in the CDI process.  相似文献   

11.
Two-dimensional layered Ti3C2Tx MXene was prepared through hydrothermal etching method with LiF and hydrochloric (HCl) acid. Ti3C2Tx was further treated with oxygen plasma activated by microwave energy to obtain the activated Ti3C2Tx at different temperatures ranging from 350 °C to 550 °C. The gas-sensing properties of raw Ti3C2Tx and Ti3C2Tx activated with oxygen microwave plasma were tested toward different volatile organic compounds gases. The results indicated that Ti3C2Tx activated at 500 °C exhibited excellent gas-sensing properties at room temperature (25 °C) to 100 ppm ethanol with a value of 22.47, which is attributed to the enhancement of the amount of oxygen functional groups and defects on the MXene Ti3C2Tx film, and in turn to lead to more oxygen molecules adsorption and desorption reaction in the active defect sites. The enhancement of ethanol-sensing performance demonstrated that the activated Ti3C2Tx possess great potential in gas sensing.  相似文献   

12.
The incorporation of nanosized pseudocapacitive materials and structure design are general strategies to enhance the electrochemical performance of MXene-based materials. Herein, the decoration of manganese dioxide (MnO2) nanosheets on MXene (Ti3C2Tx) surfaces was prepared by a facile liquid phase coprecipitation method. Ti3C2Tx is initially modified by polydopamine (PDA) coating to ensure the homogeneous distribution of MnO2 nanosheets and tight and close connections between MnO2 and the Ti3C2Tx backbone. Due to the obtained three-dimensional (3D) nanostructure, facilitating electron transport within the electrode and promoting electrolyte ion accessibility, the δ-MnO2@Ti3C2Tx-0.06 electrode yields superior electrochemical performances, such as a rather large areal capacity of 1233.1 mF cm?2 and high specific capacitance of 337.6 F g?1 at 2 mV s?1, as well as high cyclic stability for 10000 cycles. Furthermore, δ-MnO2@Ti3C2Tx-0.06 composites are employed as positive electrodes, and activated carbon (AC) materials act as negative electrodes with an aqueous electrolyte of 1 M Na2SO4 to assemble asymmetric supercapacitors. The prototype device is reversible at cell voltages from 0 to 1.8 V, and manifests a maximum energy density of 31.4 Wh kg?1 and a maximum power density of 2700 W kg?1. These encouraging results show enormous possibilities for energy storage applications.  相似文献   

13.
Currently, among the various emerging energy storage systems, the lithium–sulphur (Li-S) battery is expected to be one of the next-generation lithium secondary batteries with high efficiency. However, the practical application of Li-S batteries still faces many obstacles. To solve the shuttle effect of lithium polysulphides, ultrathin Ti3C2Tx nanosheets were prepared through the in-situ acid etching method and applied to separator modification to suppress the shuttle effect of lithium polysulphides. Ultrathin Ti3C2Tx nanosheets with enlarged interlayer spacing accelerated the migration of Li+. The abundant termination groups on the surface of Ti3C2Tx played the role of the lithium polysulphide capture centre. When the mass loading of separator modification materials was set as 0.025 mg cm−2, the as-prepared battery exhibited a reversible specific capacity as high as 780 mAh g−1 after 200 cycles at 0.2 C, and the single-cycle capacity decay rate was only 0.09%.  相似文献   

14.
《Ceramics International》2021,47(21):29995-30004
Novel and highly effective electromagnetic interference (EMI) shielding materials are desirable to attenuate unwanted electromagnetic radiation or interference produced by electrical communication devices. Here, functional Ti3C2Tx@Ni particles with a core@shell and sandwich like structure were fabricated using the facile electroless plating technique. The core@shell structured Ti3C2Tx@Ni consists of a Ti3C2Tx core and a Ni shell. In the core, thin Ni layers are sandwiched in between Ti3C2Tx flakes. EMI shielding effectiveness (SE) values of Ti3C2Tx@Ni/wax composites increased with increasing Ti3C2Tx@Ni content. The average EMI SE value of 60 wt% Ti3C2Tx@Ni/wax composite was 43.12 dB, increased by 73% as compared with 24.93 dB for the same content of pristine Ti3C2Tx in wax in the frequency range 2–18 GHz. An average EMI SE of 74.14 dB was achieved in the 80 wt% Ti3C2Tx@Ni/wax. The enhanced EMI shielding performance should be ascribed to the synergic effect of the absorption loss of the Ti3C2Tx core and the magnetic loss of the Ni shell and the inner Ni layers.  相似文献   

15.
《Ceramics International》2022,48(5):6600-6607
Ti3C2Tx, as a novel two-dimensional material, displays promising prospects in NH3 detection at room temperature. However, the NH3 detection limit of pristine Ti3C2Tx is still a major research concern. Therefore, it is important to explore new Ti3C2Tx-based nanocomposites for better NH3-sensing performance. In the present experiment, Ti3C2Tx/In2O3 nanocomposites were successfully synthesized by ultrasonication and characterized by XRD, FESEM, TEM, XPS, and BET. The optimal Ti3C2Tx/In2O3-based sensor had a high response of 63.8% (30.4 times higher than that of pristine Ti3C2Tx) to 30 ppm NH3 at room temperature. In addition, the optimal Ti3C2Tx/In2O3-based sensor had stable repeatability, excellent selectivity, and long-term stability, while exhibiting excellent potential for NH3 detection at room temperature.  相似文献   

16.
To prevent restacking of the Ti3C2Tx layers, the Ti3C2Tx-foam has been successfully synthesized through thermal treatment of Ti3C2Tx-film with the hydrazine monohydrate. The interconnected porous structure of Ti3C2Tx-foam could effectively reduce the restacking of the Ti3C2Tx sheets and shorten the diffusion path of ions and accelerate the intercalation/de-intercalation of ions. The Ti3C2Tx-foam-80 used as free-standing electrode achieves a high areal capacitance of 271.2 mF/cm2 (122.7?F/g) at a scan rate of 5?mV/s in 1?M KOH electrolyte. It also exhibited a high capability rate of 65.5% from 5?mV/s to 100?mV/s and good cycle life with 88.7% retention of its initial after 10,000 cycles at a scan rate of 50?mV/s.  相似文献   

17.
《Ceramics International》2022,48(22):33412-33417
Ti3C2Tx MXene has attracted extensive attention in the field of electromagnetic (EM) protection over recent years. Multilayer Ti3C2Tx (M-Ti3C2Tx), as an intermediate product of MXene ultra-thin structure, has potential advantages in the field of EM protection. Herein, the M-Ti3C2Tx was obtained by HCl/LiF etching Ti3AlC2. The microwave absorption (MA) and electromagnetic interference (EMI) shielding performance of Ti3AlC2 and M-Ti3C2Tx were compared. The mechanism research of MA and EMI shielding indicates that the construction of local conductive network plays a leading role in the EM wave attenuation. The sample with 30% M-Ti3C2Tx display RLmin of ?50.26 dB, and corresponding bandwidth of 4.64 GHz at the thickness of 1.7 mm. Especially, the metastructure based on the EM parameters of M-Ti3C2Tx/wax exhibits ultra-wide bandwidth (15.54 GHz). Our research will provide a basis for the design of MXene-based EM protection performance.  相似文献   

18.
Ti3C2Tx MXene, an emerging two-dimensional (2D) ceramic material, has rich interfaces and strong conductive networks. Herein, we have successfully built a heterostructure between Ti3C2Tx MXene and WS2 to improve electromagnetic absorption performance. X-ray diffraction and X-ray photoelectron spectroscopy were used to determine the successful synthesis of Ti3C2Tx/WS2 composite. Field emission scanning electron microscopy and transmission electron microscopy images show that WS2 nanosheets are evenly dispersed on the accordion-like Ti3C2Tx MXene. Importantly, Ti3C2Tx MXene/WS2 composite has sufficiently high dielectric loss and impedance matching due to self-adjusting conductivity and 2D heterostructure interfaces. As a result, the Ti3C2Tx/WS2 composite has a minimum reflection loss (RLmin) of −61.06 dB at 13.28 GHz. Besides, it has a broad effective absorption bandwidth (EAB) of 6.5 GHz, with EAB >5.0 GHz covering a wide range of thickness. Such impressive results may provide experience for the application of Ti3C2Tx ceramics and 2D materials.  相似文献   

19.
Three-dimensional flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 composites were successfully synthesized by an in situ solvothermal reaction, and the electromagnetic (EM) wave absorption performance of the hybrids were explored at 2.00–18.00 GHz. The as-prepared Ni(NiO)/Ti3C2Tx/TiO2 composites include flower-like Ni(NiO) with uniform distribution on the surface of Ti3C2Tx MXenes and part of them get into the space between interlayers. The Ni(NiO)/Ti3C2Tx/TiO2 composites exhibit a maximum reflection loss (RL) value of ?41.74 dB at 14.96 GHz with the absorber thickness of merely 1.3 mm and the effective absorption bandwidth (EAB) reaches 3.20 GHz. The outstanding electromagnetic wave absorbing performance can be attributed to the dielectric loss of Ti3C2Tx MXenes and multi-phase heterostructures, the magnetic loss of Ni(NiO) and their synergistic loss mechanism. Moreover, the zigzag path formed by flower-like Ni(NiO) also has a great consumption effect on electromagnetic waves by incurring the eddy current under the affect of alternating EM waves. The laminated structure of Ti3C2Tx MXenes also dissipates microwaves by offering the space for multiple reflections and scattering. This paper furnished a novel modus for synthesizing original EM wave absorption materials and making the balance among thickness, broad bandwidth, oxidation resistance and light weight, which makes Ni(NiO)/Ti3C2Tx/TiO2 composites a hopeful material for microwave absorption (MA).  相似文献   

20.
《Ceramics International》2022,48(7):9059-9066
Highly active two-dimensional (2D) nanocomposites have been widely concerned in the field of gas sensors because of their unique advantages and synergistic effects. 2D/2D SnO2 nanosheets/Ti3C2Tx MXene nanocomposites were synthesized by using layered Ti3C2Tx MXene and uniform SnO2 nanosheets by hydrothermal method. Characterization results show that the SnO2 nanosheets are well dispersed and vertically anchored on the layered Ti3C2Tx MXene surface, forming heterogeneous interfaces. Based on the gas-adsorption capabilities and synergistic effects of electronic properties, SnO2 nanosheets/Ti3C2Tx MXene nanocomposites show high triethylamine (TEA) gas-sensing performance at low temperature (140 °C). The sensor responses of the nanocomposites and pure SnO2 nanosheets to 50 ppm of TEA are 33.9 and 3.4, respectively. An enhancement mechanism for SnO2 nanosheets/Ti3C2Tx MXene nanocomposites is proposed for highly sensitive and selective detection of TEA at low temperature. The combination strategy of two-dimensional metal oxide semiconductor and multilayer MXene provides a new way for the development of cryogenic gas sensors in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号