首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用阴极电弧离子镀技术在1Cr13不锈钢表面制备了ZrN梯度层和Zr/ZrN多层膜,并用电化学腐蚀方法和中性盐雾法检测了1Cr13基体、ZrN梯度层和Zr/ZrN多层膜的耐腐蚀性能.结果表明:Zr/ZrN多层膜和ZrN梯度层均能提高1Cr13基体的抗腐蚀能力,而Zr/ZrN多层膜的效果更明显:镀层的内部缺陷(如微孔)和液滴导致薄膜发生孔蚀、隙缝腐蚀和电偶腐蚀;镀层保护的实质是物理屏障作用,细化晶粒、减少膜层中的液滴及针孔等缺陷能显著提高薄膜的抗腐蚀性能.  相似文献   

2.
《Ceramics International》2021,47(18):25655-25663
The monolayer VN as well as multilayer VN/C coatings were obtained on 316 L steel via physical vapor deposition (PVD) technology. Structure, mechanical property and tribo-corrosion behavior of monolayer VN and multilayer VN/C coatings under simulated seawater were estimated by corresponding detection equipment. After analysis, C nanolayer could break the grain growth of VN phase, which would enhance the coating toughness and inhibit the source of crack. At the same time, the multilayer structure interface could suppress the dislocation movement. In tribo-corrosion process, the corrosion current density (icorr) of VN/C coating was 2.71 × 10−6 A/cm2, which was 70.47% lower than that of VN coating (9.18 × 10−6 A/cm2), implying that the nano-multilayer structure of VN/C coating showed a strong barrier effect on corrosion medium. Moreover, the C nanolayer not only suppressed the permeation of simulated seawater, but also formed the transfer film to protect the substrate. Thus, the multilayer VN/C coating revealed stronger anti-wear and anti-corrosion abilities than the monolayer VN coating.  相似文献   

3.
The two-layer and multi-layer Cr/CrxN coatings were fabricated on 316 L stainless steel (316 L SS) substrates by the arc ion plating technique. The two-layer Cr/CrxN coating was a typical CrN coating with an adhesive Cr layer. And the multi-layer Cr/CrxN coating design was in two dimensions. In the first dimension, the multi-layer Cr/CrxN coating consisted of alternative Cr/CrN layers with the thickness ratio of 1:5; in the second dimension, the alternative Cr2N layers with the thickness of 10 nm were inserted in CrN layers. This design was expected to increase transverse interfaces in a smaller scale. The microstructures, mechanical, corrosion and tribocorrosion performances of both Cr/CrxN coatings were systematically investigated. The results showed that the special multi-layer design of Cr/CrxN coatings improved mechanical, anti-corrosion and anti-tribocorrosion performances. Compared with the two-layer Cr/CrxN coating, the reduced tribocorrosion damage of the muti-layer Cr/CrxN coating was closely related to the inhibited synergistic effect between electrochemical corrosion and mechanical wear. In conclusion, the multi-layer Cr/CrxN coating was more suitable to work as the surface protective coating than the two-layer Cr/CrxN coating in seawater.  相似文献   

4.
《Ceramics International》2022,48(17):24638-24648
Herein, we have deposited Cr/CrN/Cr/CrAlN multilayer coatings with various modulation ratios on TC11 alloy substrate using cathodic arc system. The influence of various modulation ratios on microstructure and Al2O3 sand erosion behavior of coatings is systematically studied. Results reveal that the coatings are about 200 nm per cycle and total thickness is 8 μm. Five groups of coatings exhibit high hardness (>3000 HV0.025). The coating with modulation ratio of 12 adhesion can reaches 55 N. The residual stress increases with the decrease of the modulation ratio, but the increase is generally low (less than ?2 GPa). In addition, according to sand erosion test, it is found that sand erosion resistance of multilayer coating is significantly around 5 times higher than TC11 alloy matrix. The erosion morphology shows that a large number of irregular cracks and layered spalling appear on the surface of the coating, indicating that the cracks are constantly initiated under the continuous impact of the sand and gravel,and finally gather together and then spalling. Moreover, dynamic response and stress field of the coating under the impact of single sand (Al2O3) are studied by numerical simulations. It is determined that coating cracking is caused by high tensile stress under CrAlN layer. In addition, according to crack propagation morphology and influence of different interfaces between multilayered structures on crack tips, propagation/termination mechanism of cracks is analyzed in detail. Cracks are easy to initiate in hard CrAlN layer and consume a lot of energy after propagating into soft Cr layer, thereby ending at next soft and hard interfaces. These results provide experimental and theoretical support for the study of high tenacity and anti-erosion coating.  相似文献   

5.
《Ceramics International》2022,48(24):36570-36584
CrAlN coatings were prepared on Al–Si alloys using filter cathode vacuum arc deposition technique with nitrogen as the reactive gas and Cr25Al75 alloy target as the arc source. The effect of nitrogen pressure on the microstructure, mechanical properties and electrochemical properties of the coatings had been systematically studied. The results showed that the composition, structure and performance of the CrAlN coating depended on the nitrogen pressure. As the nitrogen pressure increased, the Al and Cr content decreased while the N content increased slowly in the coating. Meanwhile, the phase structure gradually changed from AlN phase to CrN phase. The hardness of the CrAlN coating increased significantly with the increase of nitrogen pressure from 0.04 to 0.06 Pa due to the formation of CrN phase and grain refinement. However, further increasing the nitrogen pressure to 0.07 Pa, the hardness was reduced owing to the deterioration of the surface quality caused by target poisoning. Moreover, the adhesion strength of the coating gradually decreases, and the corrosion resistance of the CrAlN coating first increased and then decreased with increasing the nitrogen pressure. The CrAlN coating deposited at a nitrogen pressure of 0.05 Pa had the best corrosion resistance, with the highest polarization resistance, charge transfer resistance and pore resistance, which was related to the combined effect of great compactness and AlN-dominant phase structure in the coating.  相似文献   

6.
In this study, the Ti-6Al-4V substrate was coated by CrN-CrN/TiN-TiN and CrN/CrAlN multilayer coatings using the cathodic arc physical vapor deposition (Arc-PVD) method. The results of potentiodynamic polarization (PDP) have shown the lowest and highest corrosion current density belong to the double-layer (0.16 µA/Cm2) and TiN (0.51 µA/Cm2) samples, indicating the higher corrosion resistance of the double-layer coating. The field emission electron microscope (FESEM), X-ray diffraction pattern (XRD), open circuit potential (OCP), PDP, and electrochemical impedance spectroscopy (EIS) analysis were employed in order to characterize the coatings and evaluate their corrosion behavior. Finally, applying the double-layer coating resulted in the significant improvement of the protective behavior of the Ti-6Al-4V alloy, as compared to the sample coated with TiN in corrosive environments.  相似文献   

7.
《Ceramics International》2020,46(14):22404-22418
AISI 316L steel is often used in materials applied toward nuclear power but are subjected to pitting corrosion in a marine environment. In this study, (Cr, W, Al, Ti, Si)N multilayer coatings were deposited using multi-arc ion plating on the surface of non-nitrided and nitrided AISI 316L steel. The microstructure and corrosion resistance of four different systems were investigated, namely, (i) untreated AISI 316L steel, (ii) plasma nitrided (PN), (iii) coated on an untreated matrix (coating) only, and (iv) coated on nitrided (hybrid) specimens. The phase structures, morphologies, and compositions of the different specimens were characterized using X-ray diffraction, transmission electron microscope, Atomic Force Microscope, scanning electron microscope, X-ray photoelectron spectroscopy, and energy dispersive x-ray spectroscopy. The results show that a thin CrWAlTiSiN multilayer coating, approximately 2.3 μm in thickness, is deposited on the surface of an ~12 μm nitrided layer. Potentio-dynamic polarization and electrochemical impedance spectroscopy were used to evaluate the assessment of the electrochemical behavior in the natural seawater of China's Yellow Sea. The hybrid specimens exhibited excellent corrosion resistance compared to both the nitrided and coated specimens.  相似文献   

8.
海水压力对深海用环氧涂层防护性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
高瑾  钱海燕  孙晓华  郭为民  李晓刚 《化工学报》2015,66(11):4572-4577
采用电化学阻抗谱(EIS)技术与局部交流阻抗技术(LEIS)研究了深海环境用重防腐环氧涂层H44-61在深海模拟环境(青岛海水,常压以及6 MPa交变压力)下的腐蚀电化学行为,探讨了交变压力对深海用涂层防护性能的影响。结果表明,涂层在6 MPa交变压力下的涂层电容较常压下高且涂层电阻较低,涂层的防护性能下降,但低频阻抗膜值均在107 Ω·cm2以上,说明涂层仍有较好的防护性能;LEIS的研究表明交变压力下人造缺陷区域的阻抗值较小,缺陷周围涂层的剥离面积较大,说明压力交变能加快电解质溶液向涂层金属界面扩散,加速涂层下金属的腐蚀过程,降低涂层的防护性能。  相似文献   

9.
采用多弧离子镀技术,在316不锈钢基底表面制备Cr/CrAlSiN涂层,通过SEM、XRD表征涂层成分,利用多功能摩擦试验机对涂层在海水环境下的摩擦学性能测试。结果表明:相对于316L基底,在摩擦实验中,由于海水的润滑作用,涂层表现了良好的摩擦性能。电化学阻抗谱测试中Cr/Cr Al Si N涂层有效的保护了基底。  相似文献   

10.
A CrN ceramic coating is a promising substitution for electroplated Cr (Ⅵ) hard coatings; however, it has not yet replaced a decorative Cr (Ⅵ) layer owing to its low reflectivity of visible light and relatively poor corrosion resistance. A Cr/CrN composite structure can address these shortcomings. Our recent work demonstrated that an addition of Fe can facilitate the densification of hot-pressed Cr sputtering targets and enhance the mechanical properties of Cr/CrN composite coatings. In this work, we focus on reporting optical properties and corrosion resistance of the Fe-modified Cr/CrN layers for decorative applications, and clarifying the effect of Fe on these performances. The results show that Fe can increase the amount of metallic phase in the Cr/CrN composite structure and helps enhance its reflectance in the visible region. The composite coating deposited by Cr90Fe10 (at.%) target/alloy exhibits a greater reflectivity of visible light and a better corrosion resistance than those of a single-phase CrN coating. This is attributed to its fine microstructure, which is beneficial for a dense and smooth surface. The color of the coating can be controlled by both the partial pressure ratio of N2 during deposition and the Fe content in the Cr-Fe sputtering target. The present results show that the addition of Fe can lead to the reduction in the processing cost of Cr targets, enhance the mechanical properties of the composite coatings, and broaden the deposition window. Such cost-effective Fe-modified Cr/CrN composite coatings are expected to be used in various decorative applications.  相似文献   

11.
Conducting polymers (CP) have been envisaged as nontoxic substitutes for chromates in corrosion protective coatings owing to their environmental stability, excellent corrosion resistant performances and good adhesion to metal substrate. Recent advancements in the field of corrosion protective coatings have therefore headed towards the utilization of conducting polymers as “smart corrosion inhibitors” in the formulation of eco-friendly anti-corrosive coatings. With the aim to develop a facile method for the synthesis of anti corrosive coating material having superior corrosion protective properties, the present work reports the corrosion studies of polypyrrole/DGEBA composite coatings on mild steel (MS). The coatings were characterized by physicochemical as well as physicomechanical studies while the corrosion protective performance was evaluated by chemical resistance in different corrosive media, corrosion rate and open circuit potential (OCP) measurements. The morphologies of corroded, coated, uncorroded and uncoated samples were investigated by SEM studies. The composite coatings were found to show far superior anti corrosive performance than PANI/epoxy coatings in acid, alkaline as well as saline environments.  相似文献   

12.
采用多弧离子镀技术在高速钢表面制备了(Ti,Cr)N镀层,通过电化学工作站对镀层的塔菲尔曲线进行测试,分析镀层的耐腐蚀性,并采用质量变化法对电化学测试结果进行了验证。利用扫描电子显微镜观察了(Ti,Cr)N镀层腐蚀前后的微观形貌。结果表明,随电流比例ICr/ITi的增大,(Ti,Cr)N镀层表面晶粒尺寸逐渐减小。当ICr/ITi为90 A/60 A时,基体的自腐蚀电位由-0.750 V正移至-0.534 V,基体的腐蚀速率降低85.67%,耐蚀性提高。基体的腐蚀主要为点蚀和均匀腐蚀,(Ti,Cr)N镀层主要为小孔腐蚀。  相似文献   

13.
The St-37 type steel substrates were pretreated with Cr(VI) and Cr(III) conversion coatings where the latter was then post-treated with Co(II) and Ni(II) chemical treatments. The epoxy coatings containing 3.5 wt% nano-sized ZnO particles were applied over the chemically treated steel samples. The corrosion resistance of the samples was studied by a DC polarization technique. A scanning electron microscope (SEM) was utilized to investigate the morphology of the pretreated and post-treated samples. Electrochemical impedance spectroscopy (EIS) was utilized to investigate the corrosion resistance of the epoxy nanocomposites for different immersion times in 3.5 wt% NaCl solution. The adhesion strengths of the coatings were measured before and after 120 days of immersion in the corrosive electrolyte using a pull-off test. The cathodic delamination (CD) of the painted samples was also investigated. Results showed that conversion coatings can significantly increase the corrosion resistance and adhesion strength of the epoxy coating on the steel, and also reduce the rate of CD in comparison with an untreated sample. The adhesion strength and corrosion resistance of the epoxy coating on the Cr(III) pretreated samples were significantly greater than on the Cr(VI) sample. The increase in adhesion strength and corrosion resistance was more pronounced on the samples that were post-treated with Co(II) and Ni(II) chemical treatments. The cathodic disbonded areas of the Cr(III)–Co(II) and Cr(III)–Ni(II) post-treated samples were significantly lower than the Cr(III) and Cr(VI) pretreated samples. Results showed that Cr(III)-based conversion coatings can improve the anticorrosion performance and reduce CD compared with those with Cr(VI).  相似文献   

14.
针对井下油管的腐蚀环境和防腐蚀涂覆的需要,研制了YG系列油管防腐蚀涂料,包括YG-01烘烤固化型油管涂料和YG-03常温固化型油管涂料等。性能研究结果表明:YG系列油管防腐蚀涂料具有优异的耐盐雾、耐酸和耐油田污水等耐腐蚀性能;以及在高温高压下耐H2S/CO2腐蚀和耐碱等性能,并具有较好的综合性能,可以满足不同腐蚀环境下井下油管内防腐的涂覆需要。其中YG-01满足国内现有进口油管/钻杆内防腐涂覆作业线的工艺要求。  相似文献   

15.
Ceramic coatings often suffer from the formation and expansion of microcracks, which leads to a failure of the protective function. In this work, we observed self-healing of the microcracks in the TiSiN/Ag multilayer coating upon heating. This behavior can be attributed to diffusion of the Ag atoms to the cracks in the multilayer coating, while similar cracks in the TiSiN monolayer coating remain unchanged after the same treatment. Furthermore, the TiSiN/Ag coating with healed cracks possesses similar electrochemical corrosion and biofouling properties to the as-deposited one, suggesting that TiSiN/Ag is a promising system in marine engineering applications. The mechanism of self-healing was explained by kinetic simulations based on ab initio molecular dynamics and the diffusion activation energies of Ag in irregular ceramic structures have been calculated. The here adopted theoretical method also provides a new pathway for exploring new coating systems with a potential self-healing function.  相似文献   

16.
采用激光熔覆方法制备了Fe-20Cr、Fe-30Cr、Fe-40Cr共3种不同Cr含量的Fe基涂层。用扫描电镜(SEM)和X射线衍射(XRD)分析了涂层的微观组织和物相,借助电化学工作站测试了涂层在含CO2饱和地层水中的腐蚀行为,并与P110套管钢进行了对比。结果表明:激光熔覆Fe基含Cr涂层皆为冶金结合,熔覆层质量良好。在地层水中通入CO2后3种涂层腐蚀趋势变大,但由于表面疏松CaCO3和MgCO3产物的形成,抑制了涂层的腐蚀。低Cr含量的Fe-20Cr涂层具有较高的耐蚀性。Cr含量增加时,由于Cr23C6、Cr7C3等碳化物在晶界处析出,产生晶体贫铬区,进而降低了高Cr含量涂层的耐蚀性,但碳化物析出提高了涂层的硬度。  相似文献   

17.
Cathodic delamination is one of the major modes of failure for anticorrosive coatings subjected to a physical damage and immersed in seawater. The cause of cathodic delamination has been reported to be the result of a chemical attack at the coating–steel interface by free radicals and peroxides formed as intermediates in the cathodic reaction during the corrosion process. In this study, antioxidants (i.e., free radical scavengers and peroxide decomposers) have been incorporated into various generic types of coatings to investigate the effect of antioxidants on the rate of cathodic delamination of epoxy coatings on cold rolled steel. The addition of <5 wt% free radical scavengers to epoxy coatings improved the resistance toward cathodic delamination by up to 50% during seawater immersion, while peroxide decomposers had a limited effect. Testing using substrates prepared from stainless steel, copper, aluminum, galvanized steel, and brass also showed a reduction in the rate of cathodic delamination when the coating was modified with a free radical scavenger. The protective mechanism of free radical scavengers investigated for the primers are similar to that of antioxidants used for protection against photochemical degradation by UV-radiation of top coatings. Both substrate corrosion and degradation of a coating exposed to UV-radiation lead to the formation of free radicals as reactive intermediates.  相似文献   

18.
The formation of phosphate coatings by cathodic electrochemical treatment using graphite and steel anodes and evaluation of their corrosion resistance is addressed in this paper. The type of anode used, graphite/steel, has an obvious influence on the composition of the coating, resulting in zinc–zinc phosphate composite coating with graphite anode and zinc–iron alloy–zinc phosphate–zinc–iron phosphate composite coating with steel anode. The corrosion resistance of the coating is found to be a function of the composition of the coating. The deposition of zinc/zinc–iron alloy along with the zinc phosphate/zinc and zinc–iron phosphate using graphite/steel anodes has caused a cathodic shift in the Ecorr compared to uncoated mild steel substrates. The icorr values of these coatings is very high. EIS studies reveal that zinc/zinc–iron alloy dissolution is the predominant reaction during the initial stages of immersion. Subsequently, the formation of zinc and iron corrosion products imparts resistance to the charge transfer process and increases the corrosion resistance with increase in immersion time. The corrosion products formed might consist of oxides and hydroxychlorides of zinc and iron. The study suggests that cathodic electrochemical treatment could be effectively utilized to impart the desirable characteristics of the coating by choosing appropriate anode materials, bath composition and operating conditions.  相似文献   

19.
The corrosion resistance characteristics of multilayer coating systems comprised of a conversion coating base layer and an organically modified silicate (ormosil) topcoat have been analyzed using salt spray and potentiodynamic polarization curve analyses. The effectiveness of the multilayer coating systems was found to depend on the presence of an electrochemically active species in the conversion coating and on the presence of a curing agent in the ormosil system. Multilayer coatings systems comprised of conversion coatings that contain active corrosion inhibitors were found to provide high degrees of corrosion protection. In all cases, the presence of the ormosil was found to enhance the corrosion resistance of the underlying conversion coating. The use of multilayer ormosil/conversion coating systems enhances the corrosion protection of 2024-T3 aluminum alloy by combining previously developed corrosion protection methods with emerging sol-gel technology. Environmental Institute, Stillwater, OK 74078.  相似文献   

20.
(Ni-W-P)-SiC复合镀层的脉冲电沉积及其耐蚀性   总被引:1,自引:0,他引:1  
研究了(Ni—W—P)—SiC复合镀层的脉冲电沉积工艺及耐蚀性。结果表明:(Ni—W—P)—SiC复合镀层的脉冲电沉积速率比直流电沉积大,脉冲镀层的耐蚀性优于直流镀层和1Cr18Ni9Ti不锈钢;脉冲频率和占空比对镀层的沉积速率、镀层成分以及镀层的耐蚀性都有较大的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号