首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(17):14593-14598
During freeze casting of TiO2 porous ceramics, the porous architecture is strongly influenced by TiO2 particle size, solids loading, and cooling temperature. This work investigates the influences of particle size, freezing substrate, and cooling temperature on the TiO2 green bodies prepared by freeze casting. The results show that the lamellar channel width with 100 nm particles is larger than that of 25 nm particles, yet the ceramic wall thickness is noticeably decreased. The lamellar structure is more ordered when using a copper sheet than glass as its freezing substrate. A finer microstructure results when frozen at − 50 ℃ than − 30 ℃. Such porous materials have application potentials in a wide range of areas such as photocatalysis, solar cells, and pollutant removal and should be further studied.  相似文献   

2.
Porous yttria-stabilized zirconia (YSZ) ceramics are fabricated through freeze casting of oil-in-water suspension followed by sintering at 1250−1550 °C. The pore structure, compressive strength and permeability of porous YSZ ceramics are tailored via altering the emulsion content and sintering temperature. The samples obtained using higher emulsion content or at lower sintering temperature show larger Darcian and non-Darcian constants due to their higher open porosity and larger pore size. Furthermore, the investigation on individual contributions of viscous and inertial resistances on the total pressure drop during permeation process indicates that the viscous resistance increases but the inertial resistance decreases with increasing the emulsion content or decreasing the sintering temperature for samples. Porous YSZ ceramics obtained in this work with a k1 range of 3.14 × 10−13–1.12 × 10−12 m2 are appropriate for applications in filters and membrane supports.  相似文献   

3.
The development of novel cermet composites based on porous ceramics with high porosity, interconnected pore structure and good mechanical property has attracted considerable attention in engineering application. In this work, water-based freeze casting process was employed to fabricate ZrB2-SiC porous ceramic with aligned lamellar-channels structure using PAA-NH4 as the dispersant. The results revealed that the well-dispersed suspension with best rheological behavior was obtained using 1.0 wt% PAA-NH4 at pH 9. The crack-free porous ceramic exhibited small volume shrinkage ranging from 2.59 % to 1.87 %. By varying the solid loading, the fabricated samples displayed a tailored porosity ranging from 76.12% to 59.37% and an excellent compressive strength of 7 MPa to 78 MPa. After oxidation, the samples displayed a decreased porosity and an increased compressive strength. The ZrB2­SiC porous ceramic fabricated in this work will be a promising candidate for the framework of cermet composite.  相似文献   

4.
《Ceramics International》2017,43(12):8809-8812
Porous mullite microspheres with a highly open porosity and average diameter of more than 800 µm were fabricated via an oil-drop molding method accompanied by a freeze casting process. After sintering, a highly porous structure was formed due to interlocking whisker-shaped mullite grains and formation of interconnected skeletons during the freeze-casting process. Additionally, it was found that a high porosity and large pore size in the microspheres green bodies are favorable for the synthesis of mullite whiskers with high aspect ratio.  相似文献   

5.
《Ceramics International》2023,49(13):21287-21295
Porous silicate cement membranes (PSCMs) fabricated by the freeze casting method show great potential to be utilized in seawater pretreatment, fermentation broth separation, and industrial wastewater treatment due to its merit of high-temperature resistance, low-cost, and hierarchically ordered porous structures, while the freeze casting method is complex and time-consuming. In this work, a combination of freeze casting and heat-dry curing was initially applied to generate PSCMs. The preparation periods of PSCMs could be shortened by simplifying preparation processes and reducing curing time. The resulting membranes presented double-layer structures, containing a nucleation zone (N-zone) with dense structures and a stability zone (S-zone) with lamellar pore structures. The X-ray diffraction pattern of membranes displayed the mixed hexagonal and rhombohedral structures. This novel method could save more than half of energy consumption compared with the traditional preparation technology of silicate cement samples. The membranes with a mesopore size of 3.794 nm showed high permeation performance with pure water flux reaching 207.23 L m−2 h−1 under 0.15 MPa and room temperature. The separation efficiency of oil-water was 78.05% under operating pressure of 0.05 MPa. Molecular dynamics simulation was applied to narrate the microscopic process of transformation during heat-dry curing, and obtained a good similarity of consequences between the computational method simulation and experimental operation.  相似文献   

6.
《Ceramics International》2016,42(5):6046-6053
New porous Yb2SiO5 ceramics were prepared by a water-based freeze casting technique using synthesized Yb2SiO5 powders. The prepared porous Yb2SiO5 ceramics exhibit multiple pore structures, including lamellar channel pores and small pores, in its skeleton. The effects of the solid content and sintering temperature on the pore structure, porosity, dielectric and mechanical properties of the porous Yb2SiO5 ceramics were investigated. The sample with 20 vol% solids content prepared at 1550 °C exhibited an ultra-low linear shrinkage (i.e. 4.5%), a high porosity (i.e. 79.1%), a high compressive strength (i.e. 4.9 MPa), a low dielectric constant (i.e. 2.38) and low thermal conductivity (i.e. 0.168 W/(m K)). These results indicate that porous Yb2SiO5 ceramics are good candidates for ultra-high temperature broadband radome structures and thermal insulator materials.  相似文献   

7.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

8.
In this study, a commercial polycarbosilane (PCS) and divinylbenzene (DVB) were used as the preceramic polymer precursor and crosslinking agent, respectively to form porous silicon carbide (SiC) ceramics by freeze casting DVB/camphene/PCS solutions. Porous silicon carbide (SiC) with a dendritic pore structure and connecting bridges was obtained after pyrolysis at 1200 °C. The effects of DVB and PCS content on the rheological properties of the solution and the morphological characteristics and the compressive strengths of SiC ceramics were investigated. The use of DVB and the resulting chemical cross-linking yielded modified pore characteristics and much lower oxygen content in pyrolyzed SiC compared to the conventional thermal curing method. A compressive strength of 18.7 MPa was obtained for pyrolyzed SiC prepared with 20 wt% PCS and a 0.2 DVB/PCS mass ratio.  相似文献   

9.
The frozen moulds, including homogeneous, unidirectional and bidirectional freezing, were designed using materials with different thermal conductivities, and the temperature variations of the moulds and samples during the freezing process were simulated by finite element analysis. Highly porous SiC ceramics with significant differences in pore structure were fabricated by using the SiC/water slurries prepared via uniform or oriented freeze casting with various freezing modes, and porosity and compressive strength of the as-fabricated ceramics were investigated. The results showed that the pore structure of ceramics prepared by homogeneous freezing was relatively intricate and inconsistent, and had a higher compressive strength. In contrast, the pore structure of ceramics fabricated using bidirectional freezing mode was more ordered and higher porosity was observed. Moreover, porous ceramics prepared by unidirectional freezing mode exhibited a typical gradient structure with increased pore size from tens of micrometers in the bottom to hundreds of micrometers in the top.  相似文献   

10.
Highly porous alumina-zirconia ceramics were produced by adding space-holder materials during freeze casting. To increase the strength of porous ceramics, different amounts of nanoadditives (silicon carbide-SiC, silica-SiO2, and multi-wall carbon nanotubes-CNTs) were added. Space-holder materials were removed by preheating, and solid samples were produced by sintering. Up to 68% porosity was achieved when 40% space-holder was added to the solid load of slurry. Wall thicknesses between pores were more uniform and thinner when nanoadditives were added. Compressive tests revealed that SiC nanoparticles increased the strength more than other nanoadditives, and this was attributed to formation of an alumina-SiC phase and a uniform distribution of SiC nanoparticles. Results indicated that by including 20% space-holder materials and 15% SiC nanoparticles, the density decreases by 33.8% while maintaining a compressive strength of 132.5 MPa and porosity of 43.4%. Relatively low thermal conductivities, less than 3.5 W/K-m, were measured for samples with SiC nanoparticles.  相似文献   

11.
A novel forming method for preparing porous alumina ceramics using alumina fibers as raw materials by direct coagulation casting (DCC) combined with 3D printing was proposed. Porous fibrous alumina ceramics were fabricated through temperature induced coagulation of aqueous-based DCC process using sodium tripolyphosphate (STPP) as dispersant and adding K2SO4 as removable sintering additives. The sacrificial coated sand molds was fabricated by 3D printing technology, followed by the infiltration of silica sol solution for the subsequent suspension casting. Stable alumina suspension of 40 vol% solid loading was obtained by adding 2.0 wt% STPP and 40 wt% K2SO4. The controlled coagulation of the suspension could be realized after heating at 90 °C for about 35 min. The ceramic sample sintered at 1450 °C for 2 h showed the highest compressive strength of 24.33 MPa with porosity of 57.38%. All samples sintered at 1300–1450 °C had uniform pore size distributions with average pore size of 7.2 µm, which indicated the good structure stability when sintered at high temperature.  相似文献   

12.
The effects of porosity on the electrical and thermal conductivities of porous SiC ceramics, containing Y2O3–AlN additives, were investigated. The porosity of the porous SiC ceramic could be controlled in the range of 28–64 % by adjusting the sacrificial template (polymer microbead) content (0–30 wt%) and sintering temperature (1800–2000 °C). Both electrical and thermal conductivities of the porous SiC ceramics decreased, from 7.7 to 1.7 Ω−1 cm−1 and from 37.9 to 5.8 W/(m·K), respectively, with the increase in porosity from 30 to 63 %. The porous SiC ceramic with a coarser microstructure exhibited higher electrical and thermal conductivities than those of the ceramic with a finer microstructure at the equivalent porosity because of the smaller number of grain boundaries per unit volume. The decoupling of the electrical conductivity from the thermal conductivity was possible to some extent by adjusting the sintering temperature, i.e., microstructure, of the porous SiC ceramic.  相似文献   

13.
Porous SiCN ceramics were successfully fabricated by pyrolysis of a kind of polysilazane. The effects of annealing temperature on the microstructure evolution, direct-current electrical conductivity, dielectric properties, and microwave absorption properties of SiCN in the frequency range 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, SiC, Si3N4 and free carbon nanodomains are gradually formed in the SiCN. Both the SiC and free carbon nanodomains lead to the increases of the complex relative permittivity and loss tangent of SiCN. With the increase of the annealing temperature, the average real permittivity, imaginary permittivity and loss tangent increase from 4.4, 0.2 and 0.05 to 13.8, 6.3 and 0.46, respectively. The minimum reflection coefficient and the frequency bandwidth below −10 dB for SiCN annealed at 1500 °C are −53 dB and 3.02 GHz, indicating good microwave absorption properties.  相似文献   

14.
Titanium nitride (TiN) with high porosity (90%) was successfully in-situ prepared by a novel approach with the combination of carbothermic reduction nitriding method and replication template method. The microstructure of porous TiN prepared with different temperature and phenolic resin (PF) content were revealed by XRD, Raman spectrum, SEM, TEM, respectively. The results show that when the mass ratio of PF and TiO2 is 1:2 and the sintering temperature is 1850 ℃, porous TiN with high purity and ideal strength could be synthesized. In addition, the synthesis path and thermodynamic mechanism of porous TiN were analyzed by TG-DSC and Gibbs free energy calculation. The mechanical properties and corrosion resistance were preliminarily explored.  相似文献   

15.
Porous ceramics offer unique properties that can bring advances to many application areas. The freeze-casting process has a strong potential for fabricating porous ceramics; however, the effects of process parameters on part porosity must be well understood for scalable manufacturing via freeze casting. This paper presents an experimental analysis of the freeze-casting process that correlates the freeze-casting parameters with pore characteristics. A full-factorial design of experiments is conducted on a unidirectional freeze-casting testbed using silica as the ceramic material and camphene as the solvent. The effects of solid loading, particle size, cooling temperature, and the distance from the cooling surface on porosity characteristics are evaluated. The fabricated samples are cross-sectioned vertically and horizontally and imaged using scanning electron microscopy. Image processing is used to obtain the porosity characteristics of areal porosity, pore size, pore shape, and pore orientation. The capability to steer the pore orientation is also demonstrated through bidirectional freezing experiments supported by a finite-element model. As a result, a quantitative understanding of the effects of freeze-casting process parameters on porosity characteristics is gained for the silica–camphene system. These results and the presented approach can be used for reproducible manufacture of porous ceramics with controlled porosity.  相似文献   

16.
《Ceramics International》2023,49(19):31846-31854
In this study, the effect of the alumina particle size on the formation of mullite using a silica gel powder and micro- and nano-scale Al2O3 powders as raw materials was investigated. The optimized Al2O3 source was then reacted with the silica gel to prepare porous mullite-based ceramics. The results revealed that the highly reactive nano-Al2O3 powder could form mullite at a relatively low firing temperature. Therefore, the nano-Al2O3 powder was used to prepare porous mullite-based ceramics by firing at 1600 °C, 1650 °C and 1700 °C. The pore size of the prepared porous mullite-based ceramics ranges from tens to hundreds of micrometres, with the apparent porosity being 42.8–58.0%. Further, the mullite content in the samples increased with increasing firing temperature, and a higher firing temperature promoted sintering, resulting in improved strength of the sample. After calcination at 1700 °C, the mullite content in the sample reached 81.8%, and the sample showed excellent thermal shock resistance. The strengths of the samples before and after thermal shock were found to be 23.6 and 15.58 MPa, with the residual strength ratio being 66%.  相似文献   

17.
Freeze casting is a cost effective, efficient, and versatile technique capable of producing 3D structures with controlled pore shapes, orientation of crystals, and components' geometries in many porous materials. Freeze casting of hydroxyapatite (HAP) has been widely applied to bone tissue engineering due to HAP's biodegradable, biocompatible, and osteoconductive properties. It provides interconnected porous structures with a relatively high mechanical strength. However, there are still many unexplained phenomena and features because of the complexity of the process. This study demonstrates the use of X-ray synchrotron micro-radiography for providing time-resolved, in-situ imaging of ice crystal growth in the HAP suspensions. The experimental results show the ice crystal growth behavior under unidirectional and bidirectional freeze casting conditions. The finite element modeling (FEM) of the freeze casting process has been used to predict the development of ice front position and temperature gradient in the suspensions during the freeze casting.  相似文献   

18.
《Ceramics International》2021,47(22):31187-31193
In this study, porous calcium silicate (CS) ceramics with oriented arrangement of lamellar macropore structure were prepared by directional freeze casting method. The lamellar macropores were connected by the micropores on the pore wall, which had good pore interconnectivity. The effects of solid loading of the slurry, freezing temperature, sintering additive content, and sintering temperature on the microstructures and compressive strength of the synthesized porous materials were investigated systematically. The results showed that with the increase of solid loading (≤20 vol%) and sintering additive content, the sizes of lamellar pores and pore walls increased gradually, the open porosity decreased and the compressive strength increased. The sintering temperature had little effect on the pore size of the ceramics, but increasing the sintering temperature (≤1050 °C) promoted the densification of the pore wall, reduced the porosity, and improved the strength. The decrease of freezing temperature had little effect on porosity, but it reduced the size of lamellar pore and pore wall, so as to improve the strength. Finally, porous CS ceramics with lamellar macropores of about 300–600 μm and 2–10 μm micropores on the pore wall were obtained. The porous CS ceramics had high pore interconnectivity, an open porosity of 66.25% and a compressive strength of 5.47 MPa, which was expected to be used in bone tissue engineering.  相似文献   

19.
High-porosity dendritic porous alumina was fabricated by using tertiary butanol (TBA) hydrate crystals combined with directional freeze casting. The porosity of this porous alumina approximated 80 %, and its high porosity resulted in high water flux. Dendritic pores improved the physical interception capability of porous ceramics due to the intrinsic moving paths and intercepts from the pore structure. Changes in the TBA content (from 70 vol.% to 85 vol.%) caused a change in pore size from 36.58 μm to 11.54 μm and pore structure (change order: snowflake, dendritic, rod-like, and needle-like), which are important factors affecting water flux and interception capability. The interception and removal of Escherichia coli by 7 mm-height porous ceramics with dendritic structure and an average pore size of 27.90 μm reached 100 % at pH 7.2. This study provides a simple and low-cost method for the effective removal of bacteria.  相似文献   

20.
Highly porous and open interconnected pore structural TiO2 were prepared by a novel freeze casting method. In the experiment, the well-dispersed aqueous slurries were first frozen, and then dried at a reduced vacuum. Since the sublimation of ice crystals developed in the freezing process, the green bodies with highly porous were obtained. The phase composition and the microstructure of the sintered samples were characterized by XRD, SEM, porosity and the pore size distribution was measured by mercury porosimetry. The results demonstrated that the PVA concentration in the slurries remarkably affect the microstructure of TiO2 ceramics. The pore morphology of TiO2 ceramics with 3 wt.% polyvinyl alcohol (PVA) addition was dendritic, and however, the pore morphology of TiO2 ceramics with 6 wt.% PVA addition changed into columnar. The reason for the variation of the pore morphology was ascribed to the effect of the PVA gelation on the growth behavior of the ice crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号