首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(14):19954-19962
Lead-free (1-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-x(Bi0.5Na0.5)(Zr0.8Ti0.2)O3 ceramics (abbreviated as (1-x)KNNS-xBNZT, x = 0, 0.01, 0.02, 0.03, 0.035 and 0.04) were synthesized by the solid-state method, and the dependence of phase evolution, microstructure, oxygen vacancy defect and electrical properties on compositions were carefully investigated. All ceramics had a pure perovskite structure and a dense microstructure. The phase transition temperatures (TR-O and TO-T) of the ceramics were adjusted by adding BNZT, and the rhombohedral-tetragonal (R-T) phase coexistence boundary was successfully constructed at room temperature when x = 0.03, the excellent piezoelectric performance (d33 ~ 323 pC/N, kp ~ 0.372) and high Curie temperature (TC ~ 276 °C) have been achieved at this time. The grain size of the ceramics showed a strong difference on x content, and the maximum relative density value of 95.42% was obtained. The domain structure characterized by PFM confirmed that the ceramics possess small-sized nano-domains and complex domains at x = 0.03, which are the origin of enhanced piezoelectric properties. Moreover, the oxygen vacancy defect that can pin the domain walls was increased with the addition of (Bi0.5Na0.5)(Zr0.8Ti0.2)O3. As a result, the doping with BNZT can significantly affect the phase structure and electrical properties of the ceramics, indicating that the (1-x)KNNS-xBNZT ceramics system with a R-T phase boundary is a promising lead-free piezoelectric material.  相似文献   

2.
《Ceramics International》2017,43(2):2100-2106
The piezoelectric properties of KNN lead-free piezoelectric ceramics could be greatly enhanced by forming multiphase coexistence. In this work, binary system (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 [(abbreviated as (1-x)KNNS-xBNLSZ] ceramics with rhombohedral-tetragonal (r-T) phase boundary was designed and synthesized using the conventional solid-state sintering method, and effects of BNLSZ contents on their micrograph, phase structure and electrical properties were also investigated. According to phase diagram from the results of temperature-dependent capacitance and dielectric constant, the ceramics exhibit the R-T phase coexistence in the composition range of 3.5%≤x<4.5%, and an enhanced dielectric, ferroelectric, and piezoelectric behavior was obtained at such a phase boundary zone. As a result, the ceramics with x=0.04 exhibit optimum electrical properties of d33~461 pC/N, kp~46%, tan δ~0.03, Pr~16.9 μC/cm2, and Ec ~9 kV/cm, together with a Curie temperature (TC) of ~228 °C. Such a good comprehensive performance obtained in this present work is due to the R-T phase transition and enhanced ɛrPr. It was believed that this ceramic system would promote the development of KNN-based lead-free ceramics.  相似文献   

3.
《Ceramics International》2016,42(4):4648-4657
Lead-free (1−x)(K0.37Na0.63)NbO3-xCa(Sc0.5Nb0.5)O3 (x=0.050, 0.070, 0.090, 0.095 and 0.100) transparent ferroelectric ceramics have been fabricated by pressureless sintering procedure. Transmittance of 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 ceramics sintered in sealed alumina crucible was 15% higher than those sintered unsealed in air. By increasing the content of Ca(Sc0.5Nb0.5)O3, the phase structure of (K0.37Na0.63)NbO3 ceramics transformed from orthorhombic to tetragonal symmetry first and then to pseudo cubic symmetry. The 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 ceramics exhibited high density (98%), high transmittance (60%) in the near-IR region and relatively good electrical properties (εr=1914, tanδ=0.037, Tc=147 °C, Pr=6.88 μC/cm2, Ec=8.49 kV/cm). Meanwhile, the introduction of Ca(Sc0.5Nb0.5)O3 induced a composition fluctuation in the (K0.37Na0.63)NbO3 lattice and made the ceramics more relaxor-like, which would lead to a further reduction of light scattering. These results demonstrated that 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 could be promising lead-free transparent ferroelectric ceramics.  相似文献   

4.
For enhancing the piezoelectric properties of ceramics (Bi0.5Na0.5)ZrO3 (BNZ) was used to partially substitute (K0.5Na0.5)NbO3 (KNN). The addition of BNZ changes the symmetry of KNN ceramics from orthorhombic to tetragonal, and finally to rhombohedral phase. A new phase boundary with both rhombohedral–orthorhombic and orthorhombic–tetragonal phase transitions near room temperature is identified for KNN–0.050BNZ ceramics, where optimum electrical properties were obtained: d33 = 360 pC/N, kp = 32.1%, εr = 1429, tanδ = 3.5%, and TC = 329°C. The results indicated a new method for designing high‐performance lead‐free piezoelectric materials.  相似文献   

5.
The issue of how to achieve an electrocaloric effect (ECE) and pyroelectric effect in a material simultaneously remains to be a challenge for developing practical solid-state cooling devices and RF-detectors. Here, we structure a polymorphic phase transition (PPT) region by doping modification in KNN-based ceramics, which are developed to achieve the ECE. The direct measured ECE and pyroelectric properties are investigated in lead-free (1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3 (KNN-xBNZ) ceramics. The adiabatic temperature change (∆T) of 0.22 K at 100°C, 0.14 K at 70°C and 0.16 K at 30°C can be obtained under an electric field of 35 kV cm–1 for x = 0.03, 0.04 and 0.05, respectively. In addition, the temperature dependence of pyroelectric coefficient (p) is established for all compositions via the Byer-Roundy method. A large p of 454.46 × 10–4 C m–2 K–1 is detected at Curie temperature (TC) in the ceramics with x = 0.03. Achieving electrocaloric effect and pyroelectric performance simultaneously may shed light and provide a feasible design scheme for developing practically useful electrocaloric and pyroelectric materials.  相似文献   

6.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

7.
《Ceramics International》2020,46(3):2798-2804
To further improve the properties of KNN-based lead-free ceramics, a new ceramic system, (0.98-x)K0.525Na0.475Nb0.965Sb0.035O3-0.02 BaZr0.5Hf0.5O3-x(Bi0.5Na0.5)ZrO3(KNNS-BZH-xBNZ) was designed, the relevant properties such as piezoelectricity, strain, and temperature stability were analysed in detail. It was found that the R-T phase boundary can be successfully constructed when x=0.030, and this two-phase coexistence shows relatively good comprehensive properties (d33~410 pC/N, TC~255 °C, Suni~0.132%, and d33*~441 pm/V). Meanwhile, its strain property also shows good temperature stability from room temperature to 180 °C (Suni100°C/SuniRT~97.5% and Suni180°C/SuniRT~83.9%), which is comparatively superior to many KNN-based ceramics and some lead-based ceramics. Therefore, KNNS-BZH-xBNZ ceramics may broaden the practical application of lead-free ceramics.  相似文献   

8.
(1 ? x)Bi0.5Na0.5TiO3x(Na0.53K0.44Li0.04)(Nb0.88Sb0.08Ta0.04)O3 (BNT–xNKLNST) with x = 0–0.10 lead-free piezoelectric ceramics were prepared by a solid state method, and the structure and electrical properties were investigated in this study. It is found that a morphotropic phase boundary (MPB) of rhombohedral (R) and tetragonal (T) phase exists in the range of 0.03  x  0.05 and the structure changes to paraelectric phase when x > 0.07. The samples with x = 0.05 exhibit improved electrical properties owing to the formation of MPB, which are as follows: piezoelectric constant d33 = 120 pC/N, remnant polarization Pr = 39.4 μC/cm2 and coercive field Ec = 3.6 kV/mm. These results indicate that the enhanced piezoelectric properties for BNT can be achieved by forming the coexistence of R and T phase.  相似文献   

9.
A new lead‐free BNT‐based piezoelectric ceramics of (1 ? x)Bi0.5Na0.5TiO3xBi(Al0.5Ga0.5)O3 (x = 0, 0.02, 0.03, 0.04, and 0.05) were synthesized using a conventional ceramic fabrication method. Their structures and electrical properties were investigated. All the samples show a typical ferroelectric P(E) loops and S(E) curves at room temperature. The optimal properties are obtained at the composition of the x = 0.03. The substitution of Bi(Al0.5Ga0.5)O3 enhances piezoelectric constant and increases Curie temperature from 58 pC/N and 310°C of pure BNT to 93 pC/N and 325°C of the x = 0.03. The temperature‐dependent P(E) loops and S(E) curves of 0.97BNT–0.03BAG indicate that phase transition from ferroelectric to antiferroelectric takes place over a very wide temperature region from 80°C to 180°C. The results show that the introduction of BAG improves the electrical properties of BNT.  相似文献   

10.
《Ceramics International》2022,48(17):24268-24275
A series of single-phase (La0.5Li0.5)x[(Bi0.5Na0.5)0.25Ba0.25Sr0.25Ca0.25]1-xTiO3 high-entropy perovskite ceramics were designed and successfully synthesized via conventional solid state reaction method. The results of dielectric properties indicate that all samples in different proportions exhibit excellent frequency stability at a wide frequency range (102–106 Hz) and quintessential relaxation phenomenon. An optimal dielectric constant (εr = 920) with low dielectric loss (tanδ = 0.015) was achieved for x = 0.20, which is represented as equimolar high-entropy ceramic. It can be demonstrated that an amazing energy storage efficiency of 95.3% and a discharge density of 1.23 × 10?2 J/cm3 can be simultaneously achieved in x = 0.24 ceramics. Furthermore, it is confirmed by X-ray photoelectron spectroscopy that the charge compensation mechanism and the oxygen vacancies synergistically cause more Ti4+ to be reduced, which rationalizes the elevated dielectric properties. We believe that entropy engineering is a credible strategy for tailoring material properties.  相似文献   

11.
《Ceramics International》2023,49(10):15751-15760
In this paper, the ceramics with composition of (0.98-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-0.02(Bi0.5Na0.5)(Zr0.8Ti0.2)O3-xCaZrO3 (abbreviated as (0.98-x)KNNS-0.02BNZT-xCZ, x = 0, 0.01, 0.015, 0.02, 0.025, 0.03) were prepared by a traditional solid-state reaction method. The effect of the additional amount of CaZrO3 on the phase structure, microstructure, dispersion index, domain structure and piezoelectric properties of ceramics was systematically studied. Finally, the piezoelectric properties and thermal stability of ceramics could be controlled by adding different amounts of CaZrO3. The addition of CaZrO3 transferred the phase structure of the ceramics from orthogonal-tetragonal (O-T) coexistence phase to rhombohedral-orthogonal (R–O) coexistence phase, which could be demonstrated by XRD test, temperature-dependent Raman spectra and εrT plot analysis. And when x = 0.02, the ceramics possessed the best piezoelectric and dielectric properties (d33 = 253 pC/N, εr = 1185, tanδ = 0.044). Such excellent electrical properties could be originated from the heterogeneous domain structure and small-size nano-domains of the ceramics. Moreover, with the increase of CaZrO3 doping amount, the dispersion index of ceramics gradually increased from 1.404 to 1.871, which showed more obvious dispersion phase transition characteristics and improved the thermal stability of ceramics. Particularly, when x = 0.02, after annealing at a high temperature of 220 °C (close to its Curie temperature), the d33 tested at room temperature remained above 85% of that without annealing. The results indicated that (0.98-x)KNNS-0.02BNZT-xCZ ceramic was a promising lead-free piezoelectric ceramic system.  相似文献   

12.
《Ceramics International》2020,46(14):22738-22744
(1-x) K0.5Na0.5NbO3 ~ xAl2O3 (x = 0, 0.2, 0.4, 0.6) ceramics were prepared via a traditional solid-state reaction method. The phase structure, micro-morphology, dielectric properties and electromagnetic properties of ceramic samples were studied and analyzed. Results indicate that all the samples are similar to K0.5Na0.5NbO3 (KNN) in perovskite structure. With the increase of Al2O3 content, the X-ray diffraction peaks move to a large angle region, suggesting the substitution of niobium ions by aluminium ions and the distortion of the KNN lattice with a new phase arising. With the increase of Al2O3 content the grain size reduces and the dielectric constant decrease, yielding to the decrease of the electromagnetic shielding performance of ceramic. When the x is 0.4, the minimum value of reflectivity of sample is −28 dB at the frequency of 11.6 GHz. It can be concluded that both the grain size and Al2O3 content can obviously affect the electromagnetic properties of ceramics, which can be easily turned through a multi-layer SiO2 heterojunction structure.  相似文献   

13.
In the present work, lead-free (Ba1?xCax)(Zr0.04Ti0.96)O3 (x=0.00–0.09) ceramics were fabricated via a solid-state reaction method. The microstructure and electrical properties of the ceramics were investigated. The microstructure of the BCZT ceramics showed a core shell structure at compositions of x=0.03 and 0.06. The substitution of small amount of Ba2+ by Ca2+ resulted in an improvement of the piezoelectric, dielectric and ferroelectric properties of the ceramics. The orthorhombic–tetragonal phase transition was found in the composition of x≤0.03. Piezoelectric coefficient of d33~392 pC/N and lowest Ec~3.3 kV/cm with highest Pr~14.1 μC/cm2 were obtained for the composition of x=0.03 while its Curie temperature (TC) was as high as 125 °C. However, the ferroelectric to paraelectric transition temperature had slightly shifted towards room temperature with increasing Ca2+ concentration.  相似文献   

14.
In this study, Ba- and Ti-doped Li0.06(Na0.5K0.5)0.94NbO3 [(1 ? x)Li0.06(Na0.5K0.5)0.94NbO3xBaTiO3 (x = 0–0.07)] ceramics were prepared by using conventional solid state reaction method, and the microstructure and electric properties of these samples were investigated. The grain size distribution of non-doped Li0.06(Na0.5K0.5)0.94NbO3 ceramics was relatively wide. The microstructure was composed of grains ranging 1.1–5.0 μm in size. However, with increasing Ba and Ti content, the grain size distribution became narrow and the average grain size decreased from 2.0 to 0.9 μm in size. In particular, the microstructure of x = 0.07 sample was composed of grains ranging 0.5–2.2 μm in size. As a result, the frequency dispersion of dielectric constant for the (1 ? x)Li0.06(Na0.5K0.5)0.94NbO3xBaTiO3 (x = 0–0.07) ceramics was reduced and the mechanical quality factor Qm was enhanced with increasing Ba and Ti content.  相似文献   

15.
《Ceramics International》2016,42(12):13824-13829
In this work, (1−x)(K0.52Na0.48)Nb0.95Sb0.05O3−xBi0.5(Na0.8K0.2)0.5ZrO3 [abbreviated as (1−x)KNNS−xBNKZ, x=0–0.06] lead-free ceramics were fabricated using solid-state reaction method. The effects of BNKZ contents on the phase structure, piezoelectric and ferroelectric properties were investigated. The phase boundaries including orthorhombic-tetragonal (O-T) and rhombohedral-tetragonal (R-T) multiphase coexistence were identified by XRD patterns and temperature-dependent dielectric constant by adding different content of BNKZ. A giant field induced strain (~0.25%) along with converse piezoelectric coefficient d33* (~629.4 pm/V) and enhanced ferroelectricity Pr (~38 μC/cm2) were obtained when x=0.02, while the specimen with x=0.03 presented the optimal piezoelectric coefficient d33 of 215 pC/N, due to the O-T or R-T phase coexistence near room temperature respectively. These results show that the introduction of Bi0.5(Na0.8K0.2)0.5ZrO3 is a very effective way to improve the electrical properties of (K0.52Na0.48)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics.  相似文献   

16.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

17.
(1?x)Na0.47K0.47Li0.06NbO3 (NKLN)–xAgSbO3 lead-free piezoelectric ceramics were prepared using a reaction sintering method. The effects of AgSbO3 doping on the structural and electrical properties of NKLN ceramics sintered at 1000–1040 °C were studied. The dopant affected densification, phase content, sintering temperature, microstructure and electrical properties. Variations in the relative intensity of X-ray diffraction peaks were consistent with Ag+ and Sb5+ ions substituting on the perovskite lattice to produce a change in the proportions of co-existing tetragonal and orthorhombic phases. Grain growth during secondary re-crystallization was also affected. The temperature of the orthorhombic–tetragonal (O–T) phase transition and the Curie temperature (TC) decreased as a result of AgSbO3 modifications. The dielectric and piezoelectric properties are enhanced for the composition near the orthorhombic–tetragonal polymorphotropic phase boundary. The 0.92Na0.47K0.47Li0.06NbO3–0.08AgSbO3 ceramics exhibited optimum electrical properties (d33=252 pC/N, εr=1450, tan δ=0.02, and TC=280 °C). These results reveal that (1?x)Na0.47K0.47Li0.06NbO3xAgSbO3 ceramics are promising materials for lead-free piezoelectric application.  相似文献   

18.
(1 ? x)(0.85Bi0.5Na0.5TiO3–0.11Ba0.5K0.5TiO3–0.04BaTiO3)‐ xK0.5Na0.5NbO3 lead‐free piezoelectric ceramics with = 0.00, 0.02, 0.03, 0.04, 0.05, and 0.10 were prepared by a conventional solid state method. A coexistence of rhombohedral (R) and tetragonal (T) phases was found in the system, which tended to evolve into pseudocubic symmetry when x increases. The = 0.04 sample exhibited improved electrical properties: the dielectric constant εr = 1900 with the low loss tangents 0.06, the Smax/Emax of ~400 and ~460 pm/V under unipolar and bipolar electric field, respectively. Meanwhile, piezoelectric constant d33 still maintained ~160 pC/N. These could be owed to the formation of polar nanoregions for relaxor phase.  相似文献   

19.
《Ceramics International》2023,49(16):26369-26379
The correlation of the phase structure, dielectric, and ferroelectric properties of lead-free (1-x)(Na0.5Bi0.5)TiO3–xK0.5Na0.5NbO3 (NBTKNx) (0 = x ≤ 0.1) polycrystalline ceramics, fabricated via a solid state reaction technique, were investigated. The Rietveld refinement allowed identifying the crystallographic transformation from a rhombohedral to a coexisting rhombohedral-tetragonal or tetragonal long range-ordered ferroelectric (FE) phase. The dielectric investigations showed an increase of the dielectric diffuseness (1.53 = γ ≤ 1.73) and a clear shift of the depolarization temperature (Td) to a lower temperature while increasing substitution. More importantly, the lattice disorder also generated a plateau-like dielectric anomaly, leading to a thermally stable ϵr ∼2859 ± 20% (120–500 °C) and ∼3112 ± 10% (120–420 °C) for x = 0.075 and 0.1 samples, respectively. At room temperature (RT), Raman spectroscopy investigations revealed a downshift of the frequencies as a function of the composition with an inhomogeneous broadening of the Raman lines. On heating, Raman spectra showed changes in the region where the dielectric transitions are observed. Moreover, the composition dependence of the current peaks in the I-E loops confirmed the occurrence of a phase transition from a non-ergodic polar phase to an ergodic weakly polar after the applying of an electric field of 60 kV/cm−1.  相似文献   

20.
(1?x)Bi0.51(Na0.82K0.18)0.50TiO3xBa0.85Ca0.15Ti0.90Zr0.10O3 [(1?x)BNKT–xBCTZ] ceramics were prepared by the conventional solid-state method, and the effect of BCTZ content on their microstructure and electrical properties was investigated. A stable solid solution with a pure perovskite phase is formed between BNKT and BCTZ, and these ceramics have a coexistence of rhombohedral and tetragonal phases in the range of 0  x < 0.15. Their Tm and Td values are strongly independent on the BCTZ content. Moreover, the sintering temperature strongly affects the ferroelectric and piezoelectric properties of these ceramics with x = 0.02. These ceramics with x = 0.02 exhibit an optimum electrical behavior of d33  205, kp  0.25, Pr  31.8 μC/cm2, and Ec  19.1 kV/cm together with a high Td value of ~91 °C when sintered at 1180 °C and poled at an optimum condition. As a result, the (1?x)BNKT–xBCTZ ceramic is a promising candidate material for lead-free piezoelectric ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号