首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niobium pentaoxide (Nb2O5) thin films were deposited on etched aluminum foils by complexation–precipitation followed by heat treatment. Then the Al2O3–Nb2O5 (Al–Nb) composite oxide films were formed by anodizing to increase the capacitance of anodized aluminum foils which are used in aluminum electrolytic capacitors. The composition and structure of niobium deposition layer were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and the microstructures and dielectric properties of anodic oxide films were investigated by scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS) respectively. The results show that the niobium deposition layer after heat treatment existed in the form of crystalline Nb2O5. The aluminum foil with Nb2O5 coating can be anodized with higher efficiency and energy saving. Compared with that of normal anodized aluminum foils, the effective area of the anodized aluminum foils with Al–Nb composite oxide films had no apparent change. The specimens with Al–Nb composite oxide films anodized at 30 V exhibited about 20% higher specific capacitance than that of those with pure aluminum oxide films. It suggests that the method of complexation–precipitation is an effective way to increase the specific capacitance of anodized aluminum foils used in aluminum electrolytic capacitors.  相似文献   

2.
Te-Hua Fang 《Electrochimica acta》2005,50(14):2793-2797
The electrochemical oxidation characteristics of TiN thin films by atomic force microscopy (AFM) was investigated. The TiN films were produced on silicon substrate by atomic layer chemical vapor deposition (ALCVD). The anodization parameters, such as the anodized voltages, the oxidation times, and how they affected the creation and growth of the oxide nanostructures were explored. The results showed that the height of the TiN oxide dots grew as a result of either the anodization time or the anodized voltage being increased. The oxide growth rate was dependent on the anodized voltage and the resulting electric field strength. Furthermore, the oxide growth rate decreased immediately when the electric field strength reached (2-3) × 107 V/cm rapidly decrease to a growth rate of 0.  相似文献   

3.
Manganese oxide electrodes possessing pseudo-capacitance behaviors were successfully made with a simple sol–gel method. The experimental results showed that the specific capacitance was 101.2 F/g for pure manganese oxide films after annealing at 300 °C. However, the specific capacitance increased to 232.3 F/g with iron acetate (1.0 mol% Fe) addition and after annealing at 350 °C. The surface morphology observations revealed that the annealing temperature of 350 °C produced a higher surface area film with smaller pores. X-ray diffraction results showed that the manganese-iron oxide was composed of Mn3O4 and Mn2O3 phases, without iron oxide diffraction peaks. The manganese-iron oxide electrode with Mn3O4 and Mn2O3 phases exhibited good electrochemical performance and capacitance efficiency.  相似文献   

4.
《Electrochimica acta》2001,46(1-2):217-223
The anodization behavior of Al–Nd alloys in nonaqueous electrolyte solutions and the electronic properties of the resultant anodic oxide films were studied for TFT-LCD application. Sputtered Al–Nd alloy films on glass substrates were anodized at 25 °C and 1 mA cm−2 up to 100 V in ethylene glycol–water solutions containing 10 wt.% ammonium tartrate or salicylate to give uniform and flat oxide films. The incorporation of organic components into the anodic oxide films from the electrolyte solutions has lowered the relative permittivity and increased the breakdown electric field of the oxide films. This was performed by decreasing the water content in the electrolyte solutions. The tartrate solution caused higher carbon incorporation than the salicylate counterpart at the same water concentrations, giving lower relative permittivity, and higher forward breakdown electric field. The AlO stretching frequency of the oxide films decreased slightly as the amount of incorporated organic moieties increased. Nd was uniformly distributed in the oxide films and an increase in the Nd content was likely to increase both the relative permittivity and the forward breakdown electric field without any apparent change in the anodization behavior.  相似文献   

5.
Formation of iron oxide nanotubes on to pure iron substrate by an electrochemical anodization method was investigated in fluoride containing electrolytes. Anodization of iron foil in fluoride containing borate solution resulted in stacked nano-ring type oxide morphology. Nanoporous oxide layer was observed at low pH and a granular oxide layer was formed at higher pH of phosphate + fluoride solutions. Formation of either nanoporous or nanotubular oxide layer was observed in ethylene glycol (EG) solution containing 0.05-0.1 M fluoride + 1.5-3.0 vol.% water. Transition from nanoporous structure to nanotubular structure was critically controlled by anodization potential, water addition and fluoride concentration of the EG solution. The potential required for this transition decreased with increase in the water content up to 7 vol.% beyond which enhanced dissolution occurred. Annealing of the nanotubes at 500 °C resulted in predominantly α-Fe2O3 crystal structure. The annealed Fe2O3 samples consisting of a single layer of nanotubular structure showed a photo current density of 0.4 mA/cm2 at 0.5 V Ag/AgCl in 1 M KOH solution under simulated solar light illumination.  相似文献   

6.
The galvanoluminescence (GL) properties of anodic oxide films formed in organic electrolytes were investigated at different aluminum annealing temperatures. The results of the spectral measurements showed two different types of GL sources: carboxylate ions incorporated in oxide films during the anodization and the molecules AlH, AlO, Al2, AlH2, also formed during anodization process and already recognized in the case of inorganic electrolytes. The latter was related to gamma alumina crystalline regions formed by annealing of the aluminum samples at temperatures above 500 °C.  相似文献   

7.
In the present work, nanostructured TiO2 films were prepared by electrochemical anodization process of titanium in fluoride-containing electrolytes using an innovative approach. After anodization, the TiO2 films were annealed at 480?°C for 2 h in air in order to acquire anatase phase transformation and increase its crystallinity. The effects of anodization voltage, electrolyte concentration and anodization time on the formation of TiO2 films and the photocatalytic degradation of methylene blue (MB) were discussed in details. The phase structure and surface morphology of the samples characterized by means of X-ray diffraction and scanning electron microscope. The as-prepared nanostructured TiO2 film anodized in 0.5% HF electrolyte at 15 V for 240 min showed excellent photocatalytic degradation of MB and is promising for environmental purification.  相似文献   

8.
《Ceramics International》2022,48(7):9197-9204
Transition metal oxides (TMOs) have been considered as potential anode materials for asymmetric supercapacitors due to their high theoretical capacities. However, undesirable electric conductivity limits the further application in future energy storage. Here, a honeycomb-like architecture of FeOx embedded in the fungi-derived porous carbon-based material (FeOx/C) for asymmetric supercapacitor was reported. The facile synthesis strategy of fungi-derived porous carbon-based iron oxides was using the carbon derived from fungi and the process of carbothermal reduction to form the iron oxide compound. This carbon-encapsulated iron oxide compound provides highly specific surface area (The specific surface area of Fe–O–C-650 was largest (up to 219.0905 m2/g) compared with samples of Fe–O–C-550(144.0304 m2/g), Fe–O–C-750(201.7352 m2/g), Fe–O–C-850(163.2206 m2/g).), an abundance of redox sites, sufficient efficient channels for fast transportation of ions, excellent electrical conductivity, and stable skeleton. Under the three-electrode test system, the FeOx/C electrode delivers excellent specific capacitance of 565F/g at 1 mV/s and impressive cycling performance with capacitance retention of 100% after 3000 cycles. And the NiO electrode delivers a high specific capacitance of 425 F/g at a high current density of 5 mV/s. In addition, the FeOx/C//NiO asymmetric supercapacitor was assembled which exhibits remarkable specific capacitance of 111F/g at 10 mV/s and gravimetric energy density of 36 Wh/kg as well as gravimetric power density of 800W/kg with capacitance retention of 100% after 20,000 cycles, approaching those of ions capacitors.  相似文献   

9.
TiO2 or SiO2 nanoparticles dispersed in an acetone solvent containing iodine were deposited on Mg-Al-Zn alloy by electrophoretic deposition (EPD). Subsequently, the composite oxide films were formed on the substrate by anodization in KOH-Na2SiO3 aqueous solutions containing TiO2 or SiO2 nanoparticles. The films formed by EPD were improved binding with the substrate by anodization under high voltages with sparking, and then the anodic films consisted of Si-Mg or Ti-Si-Mg composite oxides. The film thicknesses of TiO2 and SiO2 on the alloy increased with anodization time. In polarization tests, the films anodized under high voltages with sparking in the alkaline solutions had high corrosion resistance. Thus, the composite oxide films formed in the present method were successful in providing corrosion resistance to Mg alloy.  相似文献   

10.
Manganese oxide was prepared at different pH and temperatures and then precipitated into activated carbon by the chemical impregnation method. Size distributions of manganese oxide sol were also measured by light scattering. The electrodes were annealed in nitrogen gas at different temperatures. In addition, electrochemical characterization was carried out using cyclic voltammetry (CV) at a scan rate of 25 mV s−1 and chronopotentiometry (CP) with constant-current (10 mA cm−2). Maximum capacitance of 461.3 F g−1 was obtained in a 0.1 M Na2SO4 solution for manganese oxide prepared under optimum conditions (pH = 13.11 and T = 25 oC) and annealed at a temperature of 195 oC. The manganese oxide particle size decreased with annealing. This probably leads to increased specific capacitance. Using X-ray photoelectron spectroscopy (XPS) the results reveal that manganese oxide species are transformed from hydroxide to oxide after annealing.  相似文献   

11.
The present work evaluates the effects of plasma power and oxygen mixing ratios (OMRs) on structural, morphological, optical, and electrical properties of strontium titanate SrTiOx (STO) thin films. STO thin films were grown by magnetron sputtering, and later thermal annealing at 700°C for 1 h was applied to improve film properties. X-ray diffraction analysis indicated that as-deposited films have amorphous microstructure independent of deposition conditions. The films deposited at higher OMR values and later annealed also showed amorphous structure while the films deposited at lower OMR value and annealed have nanocrystallinity. In addition, all as-deposited films were highly transparent (~80%–85%) in the visible spectrum and exhibited well-defined main absorption edge, while the annealing improved transparency (90%) within the same spectrum. The calculated direct and indirect optical band gaps for films were in the range of 3.60-4.30 eV as a function of deposition conditions. The refractive index of the films increased with OMRs and the postdeposition annealing. The frequency dependent capacitance measurements at 100 kHz were performed to obtain film dielectric constant values. High dielectric constant values reaching up to 100 were obtained. All STO samples exhibited more than 2.5 μC/cm2 charge storage capacity and low dielectric loss (less than 0.07 at 100 kHz). The leakage current density was relatively low (3 × 10−8Acm−2 at +0.8 V) indicating that STO films are promising for future dynamic random access memory applications.  相似文献   

12.
Copper ferrite (CuFe2O4) was synthesised from an equimolar mixture of copper and iron oxides by mechanosynthesis and subsequent heat treatment. After mechanosynthesis, depending on the milling time, the powder consists in a mixture of phases. The heat treatment at 600 °C did not lead to a complete reaction of the mechano-activated precursors. After the heat treatments at 800 and 1000 °C, the complete formation of copper ferrite for almost all the milling times was noticed. The crystal structure of the copper ferrite was found to be cubic for all the samples heat treated at 1000 °C and a mixture of tetragonal and cubic for the samples heat treated at 800 °C. The amount of copper ferrite with cubic structure predominates in the samples with prolonged milling duration and a decrease of the tetragonal distortion by increasing the milling time occurs. The crystallisation of CuFe2O4 in cubic structure for the samples milled for prolonged time is influenced by the powder contamination with iron. The magnetisations of the samples obtained after heat treatment at 1000 °C were found to be larger compared to the ones of the samples heat treated at 800 °C. The iron contamination, milling duration and heat treatment temperature influence the cations distribution, thus leading to the saturation magnetisation of the copper ferrite samples ranging from 11.9 μB/f.u. to 16.4 μB/f.u.  相似文献   

13.
Nanostructured nickel zinc ferrite (NZF) thin films were synthesized via chemical deposition method (CDM). This deposition process was based on the thermal decomposition of ammonia complex ions at 328?K. The pH of the bath solution was varied from 9.8, 9.9 and 10.0 to study its effect on the structural, morphological and electrochemical properties. The structural studies of oxide films were carried out using X-ray diffraction and FT-IR technique. All studies indicate nickel zinc ferrite phase formation with spinel crystal structure having improved intensity at increasing pH. Scanning electron microscopy reveals that morphology gets changed from grain like to hexagonal flakes which also increased the surface-to-volume ratio. The contact angle was improved from hydrophilic to super hydrophilic due to porous nature. Along with this, to propose NZF thin films for possible application in energy storage devices, its electrochemical supercapacitor properties have been studied in aqueous KOH electrolyte. The NZF thin film synthesized at pH 9.9 have shown high specific capacitance of 67 Fg?1.  相似文献   

14.
Although substrate wettability greatly impacts deposition processes using the spin-spray technique, there are few substrates suitable for the deposition of spin-sprayed ferrite thin films. To tune substrate wettability without changing the type of substrate, we demonstrate a Ni0.17Zn0.52Fe2.31O4 ferrite film deposited by the spin-spray technique on a 0.2 mm glass substrate with 0–5% aqueous ethanol solutions. All samples showed (222) preferential orientation and triangular grain morphology. The effects of aqueous ethanol solutions on the microstructure and magnetic properties of ferrite thin films were also investigated. When the ethanol volume percent concentration equaled 3%, the columnar morphology of the microstructure was most evident and the saturation magnetization and the real permeability reached their maximum values. Because of the shape anisotropy of the columnar structure, the coercivity of the parallel magnetic field increased, whereas the coercivity of the perpendicular magnetic field decreased. First-order inversion curve measurements revealed that ethanol-containing ferrite thin films had a more uniform grain size.  相似文献   

15.
We process one-dimensional (1D) NiO nanostructures in anodized alumina templates starting from electrochemically deposited Ni nanotubes (NTs), and characterize their morphology-dependent supercapacitance behavior. The morphology of the 1D NiO nanostructures is controlled by the time of annealing at 450°C. After 25 min of annealing, the NTs start to close but maintain the tubular structure, and after a further 300 min of annealing time, the tubes are completely closed and nanorods (NRs) are formed. We show that the structures obtained are highly promising for supercapacitor applications; the performance of the NiO NT structure is with a specific capacitance of 2,093 F/g, the highest ever obtained for NiO, approaching the theoretical capacitance of this material. A suitable combination of nanocrystalline grain size and the high surface area akin to the tubular structure is responsible for this high performance. In contrast, the NiO NR structure is characterized by lower performance (797 F/g). A further attribute of the proposed structure is its high stability against galvanostatic charging-discharging cycling at high current densities, with almost no alteration to performance after 500 cycles.  相似文献   

16.
Nickel hydroxide powder prepared by directly chemical precipitation method at room temperature has a nanoplatelet-like morphology and could be converted into nickel oxide at annealing temperature higher than 300 °C, confirmed by the thermal gravimetric analysis and X-ray diffraction. Annealing temperature influences significantly both the electrical conductivity and the specific surface area of nickel oxide/hydroxide powder, and consequently determines the capacitor behavior. Electrochemical capacitive behavior of the synthesized nickel hydroxide/oxide film is investigated by cyclic voltammetry and electrochemical impedance spectroscope methods. After 300 °C annealing, the highest specific capacitance of 108 F g−1 is obtained at scan rate of 10 mV s−1. When annealing temperature is lower than 300 °C, the electrical conductivity of nickel hydroxide dominates primarily the capacitive behavior. When annealing temperature is higher than 300 °C, both electrical conductivity and specific surface area of the nickel oxide dominate the capacitive behavior.  相似文献   

17.
《Ceramics International》2020,46(9):13033-13039
The effect of rapid thermal annealing treatments on the microstructure, surface morphology, and optical characteristics of zinc tin oxide (ZTO) films produced by plasma-enhanced atomic layer deposition was investigated. The ZTO films were annealed in oxygen atmosphere for 2 min at four selected temperatures from 500 to 800 °C. The X-ray diffraction showed that the annealing temperature has a great influence on the crystalline characteristics of ZTO films. The film shows complete amorphous structure for as-deposited ZTO film. Meanwhile, the spinel zinc stannate Zn2SnO4 was obtained for the samples annealed from 500 to 800 °C, which shows polycrystalline nature. The X-ray photoelectron spectroscopy proved that the annealing process in oxygen gas can effectively can reduce the oxygen vacancy defects in the films. In addition, the photoluminescence spectroscopy manifests an ultraviolet emission with a broad peak range from 345 to 385 nm. Moreover, the ultraviolet luminescence intensity increases continuously with the increase of annealing temperature. Spectroscopic ellipsometry analyses demonstrate that the refractive index of annealed films increases as the increase of annealing temperature, while the extinction coefficient decreases gradually with the increase of annealing temperature in the visible light range.  相似文献   

18.
《Ceramics International》2015,41(6):7952-7962
Self-organized TiO2 nanotubular arrays were fabricated by electrochemical anodization of Ti–6Al–4V plates in an NH4F/H3PO4 electrolyte. The effect of microstructural evolutions on the wettability and tribological behavior of the TiO2 nanotubes was investigated. Based on the XRD profiles of the fabricated material, the characteristic TiO2 peaks were not recognized after anodization; however, highly crystalline TiO2 (anatase and rutile) was formed due to crystallization during annealing at 500 °C for 1.5 h. The nanotube arrays were converted entirely to rutile at 700 °C. From a microstructure point of view, a highly ordered nanotube structure was achieved when the specimen was annealed at 500 °C, with a length of 0.72 μm and a pore diameter of 72 nm. Further increasing the annealing temperature to 700 °C resulted in the complete collapse of the tubular structure. The results indicate that the improved wettability of the anodized specimens was due to the combination of the effects of both the surface oxide layer and the increased surface roughness achieved after anodization. Moreover, the wear resistance and wettability of the sample annealed 500 °C were improved due to the high hardness (435 HV) and low coefficient of friction (0.133–168) of the highly crystalline structure of the TiO2 nanotubes.  相似文献   

19.
《Ceramics International》2015,41(7):8637-8642
Manganese ferrite nanoparticles were electro-crystallized in an electrochemical cell containing two iron electrodes, and an electrolyte solution of sodium sulfate, sodium butanoate, and manganese sulfate hydrate. The samples were characterized by X-ray diffraction, electron microscopy, magnetometry, and Mössbauer spectroscopy methods. The crystal structure of the samples was studied using X-ray diffraction. Based on obtained results we found that the manganese ferrite nanoparticles are formed in the electrochemical cell containing 0.001 M manganese sulfate hydrate. Also, the formation of a paramagnetic secondary phase in the sample without manganese is suppressed by adding manganese salt in the electrochemical cell. The nanoparticle size, shape, and morphology were characterized using electron microscopy. Magnetization curves show that all samples are magnetically soft and their specific magnetization ranges from 15 A m2 kg−1 to 75 A m2 kg−1, depending on the growth conditions. Room temperature Mössbauer spectra confirm the formation of nonstoichiometric spinel ferrite of magnetite or manganese ferrite, again depending on the growth conditions. Based on Mössbauer analysis, reduction in the population of octahedral sites provides direct evidence for the presence of the manganese ions substitution in the octahedral sites.  相似文献   

20.
The nanocrystalline nickel ferrite (NiFe2O4) was synthesized by reactive milling starting from equimolar mixture of oxides. The iron contamination during milling leads to a solid state reaction between Fe and NiFe2O4 spinel. This reaction starts for a milling time longer than 30 h. A mixed nickel–iron ferrite (Ni1?γFe2+γO4) and elemental Ni are obtained. The evolution of the nickel–iron mixed ferrite during milling and its properties were investigated using X‐ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), Laser Particles Size Analyzer and magnetic measurements. Annealing treatment (350°C/4 h in vacuum) is favorable to the reaction between phases. Replacement of Ni2+ cations by iron cations provided by contamination leads to the increase of lattice parameter value of the spinel structure. The magnetization of the nickel–iron mixed ferrite newly formed is larger than the nickel ferrite magnetization (13.6 μB/f.u. and 6.22 μB/f.u., respectively), due to the magnetic moment of Fe2+ cation which is double as compared to the Ni2+ cation. Magnetization of the milled samples decreases during milling due to the structural changes induced by milling in the nickel–iron mixed ferrite. The annealing induces a reordering of the cations which leads to a larger magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号