共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(7):10455-10461
In this work, α-MnO2/BiVO4 nanocomposites with varying MnO2 contents (0–7 wt%) were successfully prepared via the simple chemical method. The structure, morphology, and optical properties of prepared nanocomposites were studied by various analytical techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic efficiency of α-MnO2/BiVO4 nanocomposites was studied via decomposition of rhodamine B (RhB) and tetracycline (TC) under exposure to visible light (λ ≥ 420 nm). Due to good structure and composite advantages, 5%MnO2/BiVO4 (MnBV-5) photocatalyst exhibited superior RhB and TC degradation efficiency to all other samples. In addition, the MnBV-5 photocatalyst showed good stability, and no apparent reduction in photocatalysis efficiency was noted after five testing cycles. Therefore, the MnO2/BiVO4 nanocomposite demonstrated a good potential for photocatalytic decomposition of new water contaminants. 相似文献
2.
《Ceramics International》2023,49(5):7214-7222
The composition of composite photocatalysts with both broad spectral response and efficacious separation of photoinduced carriers were essential. The CDs were installed on the surface of the three-dimensional hollow microsphere nanophotocatalyst Bi2WO6 by the hydrothermal approach. Crystal structure, morphology and composition revealed the synthesis of the composite catalyst. The higher photocatalytic capability of 0.5% CDs/Cl–Bi2WO6 (0.0317 min?1) was observed in the degradation procedure, explained that the doping of Cl and the presence of CDs remarkably strengthened the visible light capture and depressed the rate of electron-hole pair complexation. Notably, scavenger-quenching assays results verified that activities of h+, ?OH and ?O2 ̄ were the primary actors in the degradation procedure. Ultimately, the degradation mechanism of a feasible TCH was submitted. This study presented a novel concept for the exploitation of composite nanophotocatalysts for the effective degradation of organic pollutants. 相似文献
3.
Elnaz Safaralizadeh Ali Reza Mahjoub Farnaz Fazlali Hasan Bagheri 《Ceramics International》2021,47(2):2374-2387
In the current research, a double Z-scheme photocatalyst C3N4-TE@TiO2/UiO-66 (CNTU) is fabricated via a two-steps facile solvothermal method from Z-scheme C3N4-TE@TiO2 (CNT). This double Z-scheme photocatalyst reveals greater performance for the removal of tetracycline (TC) than pristine C3N4-TE, TiO2, UiO-66 (U66), and their binary compounds. The optimized composite 35C3N4-TE@TiO2/35UiO-66 (35CNTU), exhibitions photocatalytic performance for antibiotic removal (TC) more than 5,4 and 2 times higher than that pure TiO2, UiO-66, and C3N4-TE, respectively. The physical and chemical features of synthesized samples were described via FTIR, XRD, SEM-EDX, TEM, BET, UV–Vis DRS, and PL. The key parameters on photocatalytic performances of 35CNTU such as pH, the amount of catalyst, and the primary concentration of TC were clari?ed. The advancement of the photocatalytic process for 35CNTU is due to the increase in the surface area and structure of double Z-scheme in this compound, which growths the active sites of the reaction as well as better separation of the photo-induced electron and hole pairs. Furthermore, 35CNTU can be recycled with superior stability for 5 cycles. The photocatalytic removal proficiency of TC over 35CNTU under visible light achieves 96% in 40 min. The findings of this study could inspire various novel plans for fabricating practical double Z-scheme photocatalyst for great performance and extensive useful applications. 相似文献
4.
《Ceramics International》2020,46(9):13517-13526
In this study, a magnetically recyclable Ni1-xCdxCeyFe2-yO4-rGO (x, y = 0.05) (NCCF-rGO) nanocomposite photocatalyst has been prepared by following a facile in-situ co-precipitation method combined with ultra-sonication means. The as-synthesized magnetically separable NCCF-rGO nanocomposite photocatalyst efficiently degrades methylene blue (MB) dye in comparison to bare Ni1-xCdxCeyFe2-yO4 (x, y = 0.05) (NCCF) nanoparticles (NPs) under visible light irradiation. The photo-degradation rate of MB with NCCF-rGO was ~9 times higher than NCCF nanoparticles (NPs). This enhanced photocatalytic performance of NCCF-rGO photocatalyst was due to the presence of reduced graphene oxide, which greatly help in production of photoactive species by reducing the rate of electro-hole pair recombination. The role of photoactive species that were responsible for the photocatalytic degradation of methylene blue has also been investigated. The as-synthesized NCCF-rGO photocatalyst expressed superb chemical stability and photocatalytic activity even after seven cycle runs. Moreover, the NCCF-rGO nanocomposite worked at all pH values and showed good acid resistance. In particular, the as-synthesized NCCF-rGO photocatalyst could be collected for the next cycle run by simply applying an external magnetic field. Hence, the NCCF-rGO nanocomposite could have potential use in organic dyes contained wastewater treatment. 相似文献
5.
《Ceramics International》2016,42(3):4421-4428
Novel CdS/BiVO4 nanocomposites were synthesized by simple solvothermal method. The as-prepared samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis diffuse reflectance spectra (DRS), Fourier transform infrared spectra (FT-IR) and photoluminescence (PL). In the nanocomposites, CdS particles were deposited on the surface of the BiVO4. The photocatalytic tests showed that the CdS/BiVO4 nanocomposites possessed a higher rate for degradation of malachite green (MG) than the pure BiVO4 under visible light irradiation. The 1.5-CdS/BiVO4 nanocomposite photocatalyst was found to degrade 98.3% of MG under visible light irradiation. Moreover, the photocatalytic mechanism of CdS/BiVO4 nanocomposites was also discussed. The results showed that the nanocomposite construction between CdS and BiVO4 played a very important role in their photocatalytic properties, which has the potential application in solving environmental pollution issues utilizing solar energy effectively. 相似文献
6.
Wenjie Ren Zhihui Ai Falong Jia Lizhi Zhang Xiaoxing Fan Zhigang Zou 《Applied catalysis. B, Environmental》2007,69(3-4):138-144
A visible-light-active TiO2 photocatalyst was prepared through carbon doping by using glucose as carbon source. Different from the previous carbon-doped TiO2 prepared at high temperature, our preparation was performed by a hydrothermal method at temperature as low as 160 °C. The resulting photocatalyst was characterized by XRD, XPS, TEM, nitrogen adsorption, and UV–vis diffuse reflectance spectroscopy. The characterizations found that the photocatalyst possessed a homogeneous pore diameter about 8 nm and a high surface area of 126 m2/g. Comparing to undoped TiO2, the carbon-doped TiO2 showed obvious absorption in the 400–450 nm range with a red shift in the band gap transition. It was found that the resulting carbon-doped TiO2 exhibits significantly higher photocatalytic activity than the undoped counterpart and Degussa P25 on the degradation of rhodamine B (RhB) in water under visible light irradiation (λ > 420 nm). This method can be easily scaled up for industrial production of visible-light driven photocatalyst for pollutants removal because of its convenience and energy-saving. 相似文献
7.
《Ceramics International》2023,49(8):12327-12333
Keeping in view of the hazardous application of tetracycline hydrochloride antibiotic, an efficient CoFe2O4/NiFe2O4 heterojunction photocatalyst has been prepared hydrothermally by combining CoFe2O4 and NiFe2O4 nanoplates. The CoFe2O4/NiFe2O4 composite with the improved photocatalytic activity can be employed for removal of tetracycline hydrochloride antibiotic, comparing to the bare CoFe2O4 and NiFe2O4. The optimized sample 5%-CoFe2O4/NiFe2O4 shows the high photocatalytic degrading tetracycline with 76.1% removal efficiency in 60 min. These improved photocatalytic activities are attributed to the extended visible light absorption and enhanced charge separation following S-scheme route as confirmed from photoluminescence and electrochemical studies. From the charge trapping experiments, it is confirmed that superoxide radical and holes in the valence band of NiFe2O4 with high thermodynamic energies are responsible for the photodegradation of the target pollutant. This work provides sufficient attention towards the preparation of low cost materials for the removal of highly hazardous pollutants being present in water. 相似文献
8.
以偏钒酸铵和碳酸铋为原料,用NaOH调节体系pH,水热法合成钒酸铋(BiVO4)光催化剂。利用XRD和UV-Vis漫反射对样品的晶型结构和光吸收特性进行表征分析。以罗丹明B为目标降解物,卤素灯(λ>400 nm)为光源,探讨水热温度、水热时间对合成BiVO4催化剂的可见光催化活性影响。结果表明,在水热温度为200 ℃、水热时间为8 h的条件下合成的钒酸铋光解效率最高。实验还研究了罗丹明B水溶液pH、催化剂投加量对光催化罗丹明B降解率的影响。结果表明,在罗丹明B水溶液pH为3、初始质量浓度为10 mg/L、每60 mL溶液催化剂投加量为0.4 g时能达到较好的光催化效果,反应2 h后降解率可达97%。 相似文献
9.
In recent years, the excessive use of antibiotics has become a serious problem for human health. BiVO4 regarded as one of the most promising visible-light-driven photocatalysts was used to degrade the antibiotics. In this paper, we fabricated Bi/BiVO4 plasmonic photocatalysts which enhanced the photocatalytic activity of BiVO4 for degradation of tetracycline (TC) antibiotic. The Bi/BiVO4 photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy. In addition, the photocatalytic experiment results show that the 0.04-Bi/BiVO4 sample has the best photocatalytic activity for 2 times than the pure BiVO4 photocatalyst. The cycle experiments, after four repetitions of the experiments, showed the sample still maintained a high photocatalytic activity. Finally, the photocatalytic reaction mechanism was also studied by free radical capture experiments and electron paramagnetic resonance spectroscopy. 相似文献
10.
Nan Jiang Yi Du Shiquan Liu Minxing Du Yibing Feng Yang Liu 《Ceramics International》2019,45(8):9754-9760
Different kinds of oriented TiO2 nanorod arrays have been actively pursuing in recent years, however, these fabrications relied on the substrates, such as fluorine-doped tin oxide glass (FTO), silicon wafer or other semiconductor precursor layer. Herein, a stable Ti3+ and oxygen vacancies doped blue TiO2 flakes composed of oriented nanorod arrays were synthesized using a facile hydrothermal treatment in diluted hydrochloric acid solution. Such centimeter-scale flake-like TiO2 product was obtained without any substrate. Since Ti3+ self-doped and/or oxygen vacancies TiO2 could extend the absorption range of TiO2 to visible light region, the blue TiO2 sample exhibited excellent photocatalytic activity under visible light irradiation (photocatalytic degradation efficiency can nearly reach up to 100% within 60?min). 相似文献
11.
Daiming Liu Chengchao Jin Yongtao Zhang Yan He Fei Wang 《Ceramics International》2021,47(6):7692-7699
Co-utilization of solar and mechanical energies via the piezo-phototronic effect is a new-emerging strategy for the implementation of catalysis. Herein, a coupling among piezoelectricity, semiconductor, and photoexcitation of Bi4Ti3O12 nanostructures (BiTO NSs) to enable a high piezo-photocatalytic activity is demonstrated. Under the advantages of improving carrier density and suppressing the carrier recombination, the electrospun BiTO NSs calcined at 600 °C exhibits a superior piezo-photocatalytic performance with a Rhodamine B degradation rate of 0.071 min?1 that is 2.5-fold and 6.7-fold for the piezocatalytic and photocatalytic solos, respectively. The high piezo-photocatalytic performance is comprehensively ascribed to several properties, including high surface area, small crystal size, suitable energy band, large piezoelectric polarization, and rich oxygen vacancy. Furthermore, by bi-harvesting the visible light and ultrasonic energies, BiTO NSs can efficiently produce superoxide and hydroxyl radicals that are responsible for the dye degradation. This work provides a new strategy for developing high-performance catalysts and sheds new insights into the piezo-photocatalysis. 相似文献
12.
《Ceramics International》2017,43(13):9658-9663
In this paper, novel copper/titanium dioxide (Cu/TiO2) composites were facilely prepared by simple sol-gel hydrothermal method. The crystalline phases, surface morphology and antibacterial activity of Cu/TiO2 were investigated systematically. Interestingly, the as-prepared Cu/TiO2 materials were made up with three different crystalline phases, including cuprite Cu2Cl(OH)3, Cu2+1O, and anatase TiO2. Next, the ‘zone of inhibition’ experiment was performed against E. coli using Cu/TiO2 catalysts with different Cu doping concentration as the antibacterial agents. Our results show that the Cu/TiO2-3.00 catalyst possesses optimal antibacterial ability against E. coli, which may be connected with the strong oxidizing reactive oxygen species (ROS) destroying the bacteria and photogenerated charge separation and recombination. 相似文献
13.
《Ceramics International》2017,43(5):4411-4418
A new efficient photocatalyst consisting of TiO2-activated carbon composite (TiO2/AC) was synthesized by sol-gel process and applied to decomposition of tetracycline (TC). Its properties and catalytic activity were evaluated in comparison with bare TiO2 and P25, based on several characterization techniques and TC photodegradation kinetic studies. The results showed TiO2/AC has better structural and electronic features for photocatalysis; SBET of 129 m2 g–1, exclusively anatase phase, crystal size of 8.53 nm and band gap energy of 3.04 eV. The catalytic activity of the material was evaluated based on photodegradation kinetic studies of TC from aqueous solution (with initial concentration=50 mg L−1 and catalyst dosage=1.0 g L−1). Non-linear kinetic model of pseudo-first order were fitted to the resulting experimental data. The apparent first-order rate constant (kapp=42.9×10–3 min–1) and half-life time (t1/2=16.1 min) determined for TiO2/AC were better than those for P25 and bare TiO2. TC degradation by-products were investigated by HPLC-MS, showing TC was completely degraded after 75 min, producing fragments with m/z smaller than 150. 相似文献
14.
《Ceramics International》2022,48(21):31233-31244
Based on the structure related to the high-temperature superconductor yttrium-barium-copper oxide, two novel high-efficiency visible light photocatalysts were created in this study. The yttrium-barium oxide (YBO) semiconductors Y2Ba3O6 (YB3O) and Y2Ba4O7 (YB4O) were prepared by a copper-free solid-phase sintering method. They were applied for the effective treatment of dye-containing wastewater by photocatalysis under visible light irradiation. The degradation efficiency of methylene blue (MB) reached more than 95% within 10 min. Stable visible light degradation of methyl orange (MO) was achieved in the presence of YB3O and YB4O. The electron spin resonance technique and active substance capture technique confirmed the presence of superoxide radicals (·O2?), hydroxyl radicals (·OH) and holes (hVB+) under visible light illumination. UV–Vis diffuse reflectance spectroscopy analysis showed that the direct optical band gaps of YB3O and YB4O were 2.550 eV and 2.583 eV, respectively, which resulted in their high visible absorption at 486.27 nm and 480.06 nm. After five cycles, the recoveries of YB3O and YB4O reached 67.15% and 72.98%. Therefore, YB3O and YB4O are considered as powerful semiconductor catalysts for the photocatalytic degradation of organic dyes in wastewater. 相似文献
15.
《Ceramics International》2019,45(11):14376-14383
Zero-dimensional cadmium sulfide (CdS) nanoparticles with small size (∼50 nm) were grafted on the two-dimensional reduced graphene oxide (RGO) nanosheet via a facile hydrothermal method without any surfactant to synthesize CdS@RGO nanocomposites in this paper. The structural analysis confirms the strong attachment and interaction between CdS and RGO in CdS@RGO photocatalyst, which leads to a higher photocatalytic efficiency (95.3%) with superior anti-corrosion stability (almost no change of efficiency over three repeated experiments) to that of pure CdS in visible light. The unique hybrid nanostructure of CdS@RGO can effectively prevent the self-corrosion of CdS and facilitate the separation of electron-hole pairs. Consequently, these outstanding photocatalytic performances of CdS@RGO endow it with a promising prospect for the degradation of organic pollutants and this work can be extended to other graphene-based inorganic semiconductor composites. 相似文献
16.
J. Bandara J. A. Mielczarski A. Lopez J. Kiwi 《Applied catalysis. B, Environmental》2001,34(4):321-333
The sensitized photocatalytic degradation of mono-, di- and trichlorophenols on iron oxides aqueous suspensions of -Fe2O3 and -FeOOH is reported in detail. The degradation of these compounds followed pseudo-first-order kinetics when -Fe2O3 was used as photocatalyst. -FeOOH was found to be inactive for chlorophenols degradation with the exception of 2,4-dichlorophenol (2,4-DCP) where a modest effect was observed. The formation of a surface complex by the chlorophenols with the iron oxide and the solubility of the particular chlorophenol in aqueous solution were observed to be the controlling parameters during the photodegradation. The results obtained with the most active catalyst -Fe2O3 are compared with TiO2. Total mineralization of chlorophenols was observed on TiO2 while on -Fe2O3 only partial mineralization was observed. In either case, the intermediates produced in solution during the photodegradation were found to be significantly more biodegradable than the initial compound. For mono-, di- and trichlorophenols the overall photocatalytic degradation was observed to increase in the order: 2,4,6-trichlorophenol (2,4,6-TCP)<2,3-dichlorophenol (2,3-DCP)<2-chlorophenol (2-CP)<2,4-DCP. The former sequence shows that the recalcitrant 2,4-DCP degrades more rapidly than other chlorophenols tested during this study. The photodegradation of chlorophenols on -Fe2O3 and TiO2 proceeds mechanistically through para-hydroxylation of the initial compound as suggested by the intermediates found by high-pressure liquid chromatography HPLC during the course of the degradation. 相似文献
17.
Suseung Lee Chang Yeon Yun Mi Sun Hahn Jeongjin Lee Jongheop Yi 《Korean Journal of Chemical Engineering》2008,25(4):892-896
The synthesis and use of carbon-doped TiO2 particles in photocatalysis under visible light are demonstrated. The carbon-doped titania with its mesoporous structure
was prepared by chemical modification and characterized by several techniques including X-ray diffraction, transmission electron
spectroscopy (TEM), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance spectra (EPR), and diffuse reflectance
UV-Vis. absorption spectra, with emphasis on the effect of carbon as a doping compound to the titania. Based on EPR data,
the photocatalytic activity by visible light can be ascribed to the trapping of electrons at interior sites of the carbon-doped
titania between the valence and conduction bands in the titania band structure, and is able to activated by visible light
of a wavelength of up to 550 nm. The photocatalytic activity of the carbon-doped TiO2 nanoparticles was evaluated by examining the decomposition of phenol by irradiation with artificial solar light (>420 nm)
and the results were compared with those using Degussa P25, a commercially available titania nanomaterial. 相似文献
18.
《Journal of Industrial and Engineering Chemistry》2014,20(2):435-443
CdS and CuWO4 modified TiO2 nanoparticles (CdS–CuWO4-TiO2) were prepared by the chemical impregnation method. The as-prepared nanoparticles were characterized using UV–visible-diffuse reflectance spectroscopy (UV–vis-DRS), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and B.E.T. surface area analysis techniques. The photocatalytic activity was evaluated based on the degradation of a dye (eosin-Y) and inactivation of a bacterium (Pseudomonas aeruginosa). The results revealed that CdS–CuWO4-TiO2 showed high photocatalytic activity over CdS-TiO2, CuWO4-TiO2 and TiO2. Moreover the reusability and stability of the photocatalyst for the degradation of eosin-Y was also studied. 相似文献
19.
《Ceramics International》2017,43(7):5388-5395
Effective solar energy harvesting and charge carrier separation are two key factors of the photocatalysis system. In this work, the heterojunction photocatalyst of CdS/CoWO4 was fabricated by a facile hydrothermal method. Compared with the pristine CdS and CoWO4, the CdS/CoWO4 heterojunction photocatalyst showed enhanced photocatalytic activity for the methylene blue (MB) degradation under visible light irradiation. Particularly, the sample with molar ratio of CdS:CoWO4 (sample C2) controlled at 3:5 showed the highest MB degradation ratio (83%) in 1 h among all samples, which is about 3 times over the pure CdS and 8 times over pure CoWO4, respectively. The greatly enhanced photocatalytic activity (3–8 times) of CdS/CoWO4 is due to the efficient separation of electron-hole pairs by the heterojunction structure and strong visible light absorption of CdS. This work provides a new insight into the application of tungstate-based heterojunction photocatalysts in environmental remediation. 相似文献
20.
ZnIn2S4 microspheres have been synthesized by a facile hydrothermal method at 80 °C. The characterization results show that the as-synthesized sample is hexagonal phase ZnIn2S4 microspheres. The results of elemental mapping and thermogravimetric confirm that the sample is the pure ZnIn2S4. The ZnIn2S4 sample has been first used as visible-light-driven photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde under ambient conditions, which shows the conversion is ca. 69% along with the high selectivity, ca. 94%, after 3 h irradiation. XRD and XPS investigations suggest that ZnIn2S4 is relatively stable in the photocatalytic reaction. 相似文献