首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In amino acid-starved yeast cells, inhibition of the guanine nucleotide exchange factor eIF2B by phosphorylated translation initiation factor 2 results in increased translation of GCN4 mRNA. We isolated a suppressor of a mutant eIF2B. The suppressor prevents efficient GCN4 mRNA translation due to inactivation of the small ribosomal subunit protein Rps31 and results in low amounts of mutant 40 S ribosomal subunits. Deletion of one of two genes encoding ribosomal protein Rps17 also reduces the amounts of 40 S subunits but does not suppress eIF2B mutations or prevent efficient GCN4 translation. Our findings show that Rps31-deficient ribosomes are altered in a way that decreases the eIF2B requirement and that the small ribosomal subunit mediates the effects of low eIF2B activity on cell viability and translational regulation in response to eIF2 phosphorylation.  相似文献   

2.
We have identified a novel nucleolar protein, Nop5p, that is essential for growth in Saccharomyces cerevisiae. Monoclonal antibodies B47 and 37C12 recognize Nop5p, which has a predicted size of 57 kDa and possesses a KKX repeat motif at its carboxyl terminus. Truncations that removed the KKX motif were functional and localized to the nucleolus, but conferred slow growth at 37 degreesC. Nop5p shows significant sequence homology with yeast Sik1p/Nop56p, and putative homologues in archaebacteria, plants, and human. Depletion of Nop5p in a GAL-NOP5 strain lengthened the doubling time about 5-fold, and selectively reduced steady-state levels of 40 S ribosomal subunits and 18 S rRNA relative to levels of free 60 S subunits and 25 S rRNA. Northern blotting and primer extension analyses showed that Nop5p depletion impairs processing of 35 S pre-rRNA at the A0 and A2 cleavage sites. Nop5p is associated with the small nucleolar RNAs U3, snR13, U14, and U18. Depletion of Nop5p caused the nucleolar protein Nop1p (yeast fibrillarin) to be localized to the nucleus and cytosol. Also, 37C12 co-immunoprecipitated Nop1p. These results suggest that Nop5p functions with Nop1p in the execution of early pre-rRNA processing steps that lead to formation of 18 S rRNA.  相似文献   

3.
4.
A yeast mitochondrial translation initiation codon mutation affecting the gene for cytochrome oxidase subunit III (COX3) was partially suppressed by a spontaneous nuclear mutation. The suppressor mutation also caused cold-sensitive fermentative growth on glucose medium. Suppression and cold sensitivity resulted from inactivation of the gene product of RPS18A, one of two unlinked genes that code the essential cytoplasmic small subunit ribosomal protein termed S18 in yeast. The two S18 genes differ only by 21 silent substitutions in their exons; both are interrupted by a single intron after the 15th codon. Yeast S18 is homologous to the human S11 (70% identical) and the Escherichia coli S17 (35% identical) ribosomal proteins. This highly conserved family of ribosomal proteins has been implicated in maintenance of translational accuracy and is essential for assembly of the small ribosomal subunit. Characterization of the original rps18a-1 missense mutant and rps18a delta and rps18b delta null mutants revealed that levels of suppression, cold sensitivity and paromomycin sensitivity all varied directly with a limitation of small ribosomal subunits. The rps18a-1 mutant was most affected, followed by rps18a delta then rps18b delta. Mitochondrial mutations that decreased COX3 expression without altering the initiation codon were not suppressed. This allele specificity implicates mitochondrial translation in the mechanism of suppression. We could not detect an epitope-tagged variant of S18 in mitochondria. Thus, it appears that suppression of the mitochondrial translation initiation defect is caused indirectly by reduced levels of cytoplasmic small ribosomal subunits, leading to changes in either cytoplasmic translational accuracy or the relative levels of cytoplasmic translation products.  相似文献   

5.
In Dictyostelium discoideum, newly assembled ribosomal subunits enter polyribosomes while they still contain immature rRNA. rRNA maturation requires the engagement of the subunits in protein synthesis and leads to stabilization of their structure. Maturation of pre-17 S rRNA occurs only after the newly formed 40 S ribosomal particle has entered an 80 S ribosome and participated at least in the formation of one peptide bond or in one translocation event; maturation of pre-26 S rRNA requires the presence on the 80 S particle of a peptidyl-tRNA containing at least 6 amino acids. Newly assembled particles that cannot fulfill these requirements for structural reasons are disassembled into free immature rRNA and ribosomal proteins.  相似文献   

6.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

7.
Ribosomal small subunits from canine pancreas were used to survey the effects of potassium chloride in the concentration range from 0.4 to 1.25 M. When combined with 60S particles, the treated 40S subunits showed no significant change in phenylalanine incorporating activity until exposure to 0.95 M KCl. Decreases in protein content of the subunits were observed at high ionic strengths. Attempts to separate dissociated ribosomal protein and the remaining core particles treated with 1.25 M KCl by centrifugation of the salt-treated particles though a 40% sucrose cushion led to the observation that ribosomal subparticles isolated in this manner retained full phenylalanine incorporating activity, whereas centrifugation through other solutions resulted in inactive or less active particles. Experiments were performed to elucidate the mechanism by which the 40% sucrose cushion was stabilizing the high salt treated 40S subunits. Two-dimensional gel electrophoresis of the proteins of the various particles isolated in the study was performed. The active 40S particles contained 23-31 protein spots. The isolation of fully active 40S subunits with fewer proteins than previously reported should simplify elucidating their role in the function of the small subunit.  相似文献   

8.
In addition to the two usual eukaryotic elongation factors (EF-1 alpha and EF-2) fungal ribosomes need a third protein, elongation factor 3, for translation. EF-3 is essential for in vivo and in vitro protein synthesis. Functionally, EF-3 stimulates EF-1 alpha dependent binding of aminoacyl-tRNA to the ribosomal A site when E site is occupied by deacylated tRNA. EF-3 has intrinsic ATPase activity which is regulated by the functional state of the ribosome. EF-3 ATPase is activated by both 40S and 60S ribosomal subunits. However intact 80S ribosomes are needed for efficient activation of EF-3 ATPase. EF-3 appears to be an RNA binding protein with high affinity for polynucleotides containing guanosine rich sequences. To determine whether guanosine rich sequence of ribosomal RNA is involved in EF-3 binding, an antisense oligonucleotide dC6 was used to block EF-3 interaction with the ribosome. The oligonucleotide suppresses activation of EF-3 ATPase by 40S ribosomal subunit and not by the 60S or the 80S particles. Poly(U)-directed polyphenylalanine synthesis by yeast ribosomes is inhibited by dC6. To define the binding site of the oligonucleotide and presumably of EF-3 on 18S ribosomal RNA, hydrolysis of rRNA by RNase H was followed in the presence of dC6. These experiments reveal an RNase H cleavage site at 1094GGGGGG1099 sequence of 18S ribosomal RNA. This guanosine rich sequence of rRNA is suggested to be involved in EF-3 binding to yeast ribosome. Data presented in this communication suggest that the activity of EF-3 involved a direct interaction with the guanosine rich sequence of rRNA.  相似文献   

9.
A previously uncharacterized Saccharomyces cerevisiae gene, FAL1, was found by sequence comparison as a homolog of the eukaryotic translation initiation factor 4A (eIF4A). Fal1p has 55% identity and 73% similarity on the amino acid level to yeast eIF4A, the prototype of ATP-dependent RNA helicases of the DEAD-box protein family. Although clearly grouped in the eIF4A subfamily, the essential Fal1p displays a different subcellular function and localization. An HA epitope-tagged Fal1p is localized predominantly in the nucleolus. Polysome analyses in a temperature-sensitive fal1-1 mutant and a Fal1p-depleted strain reveal a decrease in the number of 40S ribosomal subunits. Furthermore, these strains are hypersensitive to the aminoglycoside antibiotics paromomycin and neomycin. Pulse-chase labeling of pre-rRNA and steady-state-level analysis of pre-rRNAs and mature rRNAs by Northern hybridization and primer extension in the Fal1p-depleted strain show that Fal1p is required for pre-rRNA processing at sites A0, A1, and A2. Consequently, depletion of Fal1p leads to decreased 18S rRNA levels and to an overall deficit in 40S ribosomal subunits. Together, these results implicate Fal1p in the 18S rRNA maturation pathway rather than in translation initiation.  相似文献   

10.
The 67-kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that mediates high-affinity interactions between cells and laminin. Overexpression of this protein in tumor cells has been related to tumor invasion and metastasis. Thus far, only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated. The finding that the cDNA for the 37LRP is virtually identical to a cDNA encoding the ribosomal protein p40 has suggested that 37LRP is actually a component of the translational machinery, with no laminin-binding activity. On the other hand, a peptide of 20 amino acids deduced from the sequence of 37LR/p40 was shown to exhibit high laminin-binding activity. The evolutionary relationship between 23 sequences of 37LRP/p40 proteins was analyzed. This phylogenetic analysis indicated that all of the protein sequences derive from orthologous genes and that the 37LRP is indeed a ribosomal protein that acquired the novel function of laminin receptor during evolution. The evolutionary analysis of the sequence identified as the laminin-binding site in the human protein suggested that the acquisition of the laminin-binding capability is linked to the palindromic sequence LMWWML, which appeared during evolution concomitantly with laminin.  相似文献   

11.
L15, a 15 kDa protein of the large ribosomal subunit, interacts with over ten other proteins during 50 S assembly in vitro. We have probed the interaction L15 with 23 S rRNA in 50 S ribosomal subunits by chemical footprinting, and have used localized hydroxyl radical probing, generated from Fe(II) tethered to unique sites of L15, to characterize the three-dimensional 23 S rRNA environment of L15. Footprinting of L15 was done by reconstituting purified, recombinant L15 with core particles derived from Escherichia coli 50 S subunits by treatment with 2 M LiCl. The cores migrate as compact 50 S-like particles in sucrose gradients, contain 23 S and 5 S rRNA, and lack a subset of the 50 S proteins, including L15. Using both Fe(II).EDTA and dimethyl sulfate, we have identified a strong footprint for L15 in the region spanning nucleotides 572-654 in domain II of 23 S rRNA. This footprint cannot be detected when L15 is incubated with "naked" 23 S rRNA, indicating that formation of the L15 binding site requires a partially assembled particle.Protein-tethered hydroxyl radical probing was done using mutants of L15 containing single cysteine residues at amino acid positions 68, 71 and 115. The mutant proteins were derivatized with 1-[p-(bromo-acetamido)benzyl]-EDTA. Fe(II), bound to core particles, and hydroxyl radical cleavage was initiated. Distinct but overlapping sets of cleavages were obtained in the footprinted region of domain II, and in specific regions of domains I, IV and V of 23 S rRNA. These data locate L15 in proximity to several 23 S rRNA elements that are dispersed in the secondary structure, consistent with its central role in the latter stages of 50 S subunit assembly. Furthermore, these results indicate the proximity of these rRNA regions to one another, providing constraints on the tertiary folding of 23 S rRNA.  相似文献   

12.
Directed hydroxyl radical probing of 16S ribosomal RNA from Fe(II) tethered to specific sites within the RNA was used to determine RNA-RNA proximities in 70S ribosomes. We have transcribed 16S ribosomal RNA in vitro as two separate fragments, covalently attached an Fe(II) probe to a 5'-guanosine-alpha-phosphorothioate at the junction between the two fragments, and reconstituted 30S subunits with the two separate pieces of RNA and the small subunit proteins. Reconstituted 30S subunits capable of association with 50S subunits were selected by isolation of 70S ribosomes. Hydroxyl radicals, generated in situ from the tethered Fe(II), cleaved sites in the 16S rRNA backbone that were close in three-dimensional space to the Fe(II), and a primer extension was used to identify these sites of cleavage. Two sets of 16S ribosomal RNA fragments, 1-360/361-1542 and 1-448/449-1542, were reconstituted into active 30S subunits. Fe(II) tethered to position 361 results in cleavage of 16S rRNA around nucleotides 34, 160, 497, 512, 520, 537, 552, and 615, as well as around positions 1410, 1422, 1480, and 1490. Fe(II) tethered to position 449 induces cleavage around nucleotide 488 and around positions 42 and 617. Fe(II) tethered to the 5' end of 16S rRNA induces cleavage of the rRNA around nucleotides 5, 601, 615, and 642. These results provide constraints for the positioning of these regions of 16S rRNA, for which there has previously been only limited structural information, within the 30S subunit.  相似文献   

13.
14.
The Saccharomyces cerevisiae temperature-sensitive (ts) allele nip7-1 exhibits phenotypes associated with defects in the translation apparatus, including hypersensitivity to paromomycin and accumulation of halfmer polysomes. The cloned NIP7+ gene complemented the nip7-1 ts growth defect, the paromomycin hypersensitivity, and the halfmer defect. NIP7 encodes a 181-amino-acid protein (21 kDa) with homology to predicted products of open reading frames from humans, Caenorhabditis elegans, and Arabidopsis thaliana, indicating that Nip7p function is evolutionarily conserved. Gene disruption analysis demonstrated that NIP7 is essential for growth. A fraction of Nip7p cosedimented through sucrose gradients with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Nip7p was found evenly distributed throughout the cytoplasm and nucleus by indirect immunofluorescence; however, in vivo localization of a Nip7p-green fluorescent protein fusion protein revealed that a significant amount of Nip7p is present inside the nucleus, most probably in the nucleolus. Depletion of Nip7-1p resulted in a decrease in protein synthesis rates, accumulation of halfmers, reduced levels of 60S subunits, and, ultimately, cessation of growth. Nip7-1p-depleted cells showed defective pre-rRNA processing, including accumulation of the 35S rRNA precursor, presence of a 23S aberrant precursor, decreased 20S pre-rRNA levels, and accumulation of 27S pre-rRNA. Delayed processing of 27S pre-rRNA appeared to be the cause of reduced synthesis of 25S rRNA relative to 18S rRNA, which may be responsible for the deficit of 60S subunits in these cells.  相似文献   

15.
16.
Eukaryotic initiation factor 3 (eIF3) consists of at least eight subunits and plays a key role in the formation of the 43 S preinitiation complex by dissociating 40 and 60 S ribosomal subunits, stabilizing the ternary complex, and promoting mRNA binding to 40 S ribosomal subunits. The product of the Saccharomyces cerevisiae RPG1 gene has been described as encoding a protein required for passage through the G1 phase of the cell cycle and exhibiting significant sequence similarity to the largest subunit of human eIF3. Here we show that under nondenaturing conditions, Rpg1p copurifies with a known yeast eIF3 subunit, Prt1p. An anti-Rpg1p antibody co-immunoprecipitates Prt1p, and an antibody directed against the Myc tag of a tagged version of Prt1p co-immunoprecipitates Rpg1p, demonstrating that both proteins are present in the same complex. A cell-free translation system derived from the temperature-sensitive rpg1-1 mutant strain becomes inactivated by incubation at 37 degreesC, and its activity can be restored by the addition of the Rpg1-containing protein complex. Finally, the rpg1-1 temperature-sensitive mutant strain shows a dramatic reduction of the polysome/monosome ratio upon shift to the restrictive temperature. These data show that Rpg1p is an authentic eIF3 subunit and plays an important role in the initiation step of translation.  相似文献   

17.
Using high salt-washed ribosomal subunits from HeLa cells we detect three ribosomal proteins from the small subunit and five ribosomal proteins from the large subunit that enter ribosomal particles in the absence of ribosome formation (actinomycin D-treated cells); in untreated cells, they enter the ribosomal particles quickly, while the rest of the ribosomal proteins are incorporated gradually. At least two of the large subunit actinomycin D-resistant ribosomal proteins seem to be absent in the 55 S nucleolar ribosomal precursor.  相似文献   

18.
Spb4p is a putative ATP-dependent RNA helicase that is required for synthesis of 60S ribosomal subunits. Polysome analyses of strains genetically depleted of Spb4p or carrying the cold-sensitive spb4-1 mutation revealed an underaccumulation of 60S ribosomal subunits. Analysis of pre-rRNA processing by pulse-chase labeling, northern hybridization, and primer extension indicated that these strains exhibited a reduced synthesis of the 25S/5.8S rRNAs, due to inhibition of processing of the 27SB pre-rRNAs. At later times of depletion of Spb4p or following transfer of the spb4-1 strain to more restrictive temperatures, the early pre-rRNA processing steps at sites A0, Al, and A2 were also inhibited. Sucrose gradient fractionation showed that the accumulated 27SB pre-rRNAs are associated with a high-molecular-weight complex, most likely the 66S pre-ribosomal particle. An HA epitope-tagged Spb4p is localized to the nucleolus and the adjacent nucleoplasmic area. On sucrose gradients, HA-Spb4p was found almost exclusively in rapidly sedimenting complexes and showed a peak in the fractions containing the 66S pre-ribosomes. We propose that Spb4p is involved directly in a late and essential step during assembly of 60S ribosomal subunits, presumably by acting as an rRNA helicase.  相似文献   

19.
We identified 34 new ribosomal protein genes in the Schizosaccharomyces pombe database at the Sanger Centre coding for 30 different ribosomal proteins. All contain the Homol D-box in their promoter. We have shown that Homol D is, in this promoter type, the TATA-analogue. Many promoters contain the Homol E-box, which serves as a proximal activation sequence. Furthermore, comparative sequence analysis revealed a ribosomal protein gene encoding a protein which is the equivalent of the mammalian ribosomal protein L28. The budding yeast Saccharomyces cerevisiae has no L28 equivalent. Over the past 10 years we have isolated and characterized nine ribosomal protein (rp) genes from the fission yeast S.pombe . This endeavor yielded promoters which we have used to investigate the regulation of rp genes. Since eukaryotic ribosomal proteins are remarkably conserved and several rp genes of the budding yeast S.cerevisiae were sequenced in 1985, we probed DNA fragments encoding S.cerevisiae ribosomal proteins with genomic libraries of S.pombe . The deduced amino acid sequence of the different isolated rp genes of fission yeast share between 65 and 85% identical amino acids with their counterparts of budding yeast.  相似文献   

20.
A fragment of cDNA and an intron-containing fragment of the human L19 ribosomal protein (RPL19) gene, and introns of the human ribosomal proteins S26 (RPS26) and L32 (RPL32) genes were cloned and sequenced. The intron-containing genes of these ribosomal proteins were mapped to human chromosomes by means of polymerase chain reaction (PCR) using a human/rodent hybrid DNA panel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号