首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
CeO2-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics have been fabricated by a conventional ceramic fabrication technique. The ceramics retain the orthorhombic perovskite structure at low doping levels (<1 mol.%). Our results also demonstrate that the Ce-doping can suppress the grain growth, promote the densification, decrease the ferroelectric–paraelectric phase transition temperature (T C), and improve the dielectric and piezoelectric properties. For the ceramic doped with 0.75 mol.% CeO2, the dielectric and piezoelectric properties become optimum: piezoelectric coefficient d 33 = 130 pC/N, planar electromechanical coupling coefficient k p = 0.38, relative permittivity εr = 820, and loss tangent tanδ = 3%.  相似文献   

2.
New dielectric ceramics in the SrLa4−xSmxTi5O17 (0 ≤ x ≤ 4) composition series were prepared through a solid state mixed oxide route to investigate the effect of Sm+3 substitution for La+3 on the phase, microstructure and microwave dielectric properties. At x = 0–3, all the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1500–1580 °C. At x = 4, a mixture of Sm2Ti2O7 and SrTiO3 formed. The maximum Sm+3-containing single phase ceramics, SrLaSm3Ti5O17, exhibited relative permittivity (εr) = 42.6, temperature coefficient of resonant frequency (τ f ) = −96 ppm/oC and quality factor (Q u f o ) = 7332 GHz. An analysis of results presented here indicates that SrLa4−xSmxTi5O17 ceramics, exhibiting τ f  ~ 0 and εr ~ 53 could be achieved at x ~ 1.4 but at the cost of decrease in Q u f o .  相似文献   

3.
K0.5Na0.5NbO3x ZnO (KNN–xZn) lead-free ceramics have been prepared using the conventional sintering technique and the effects of ZnO addition on the phase structure and piezoelectric properties of the ceramics have been studied. Our results reveal that a small amount of ZnO can improve the density of the ceramics effectively. Because of the high density and ZnO doping effects, the piezoelectric and dielectric properties of the ceramics are improved considerably. The good piezoelectric and dielectric properties of d 33 = 114 pC/N, k p = 0.36, ε r = 395, and Q m = 68 were obtained for the KNN ceramics doped with 1 mol% ZnO. Therefore, the KNN-1.0 mol%Zn ceramics is a good candidate for lead-free piezoelectric application.  相似文献   

4.
Magnetic and dielectric properties of the double perovskite compounds of the type R 2CuTiO6 (RCTO, where R=Y, La, Pr and Nd) has been studied. Y2CuTiO6 (YCTO) crystallizes in a hexagonal unit cell, whereas the other three compounds form into orthorhombic structure. All four compounds show paramagnetic behavior down to 5 K. The dielectric studies show moderate dielectric constant (ε′) and very small dielectric loss (tan δ) for YCTO. The orthorhombic members of RCTO compounds exhibit moderate values of ε′ and tan δ. The dielectric properties are presented and discussed here in the light of the influence of structure and rare-earth ions on the physical properties of RCTO compounds.  相似文献   

5.
A new polymer-ceramic composite was prepared using PTFE and low loss Sr2ZnSi2O7. The dielectric properties of the composite were studied in the microwave and radiofrequency ranges. The relative permittivity (εr) and dielectric loss (tan δ) increased with the filler loading from 0.10 to 0.50 volume fractions (vf). The observed values of εr, thermal conductivity and coefficient of thermal expansion (CTE) were compared with the corresponding theoretical predictions. The ability of the composite towards moisture absorption resistance was studied as a function of filler loading. It was also found that the variation of εr was less than 2% in the temperature range 25–90 °C, at 1 MHz. For a filler content of 0.50 vf, the PTFE/Sr2ZnSi2O7 composite exhibited εr = 4.4, tan δ = 0.003 (at 4–6 GHz), CTE = 38.3 ppm/°C, thermal conductivity = 2.1 W/mK and moisture absorption = 0.09 wt%.  相似文献   

6.
Lead-free MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 ceramics have been fabricated by a conventional ceramic technique and their dielectric and piezoelectric properties have been studied. Our results show that a small amount of MnO2 (0.5–1.0 mol%) is enough to improve the densification of the ceramics and decrease the sintering temperature of the ceramics. The co-effects of MnO2 doping and Sb-substitution lead to significant improvements in the ferroelectric and piezoelectric properties. The K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping possesses optimum propeties: d 33 = 187 pC/N, k P = 47.2%, ε r = 980, tanδ = 2.71% and T c = 287 °C. Due to high tetragonal-orthorhombic phase transition temperature (T O-T ~ 150 °C), the K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping exhibits a good thermal stability of piezoelectric properties.  相似文献   

7.
Microstructure, phase transition and electrical properties of (1 − x)K0.49Na0.51NbO3 − xLiSbO3 (x = 0–0.08) lead-free piezoceramics prepared by the conventional solid-state sintering method were investigated with an emphasis on the effects of LiSbO3 doping amount x. SEM results showed that the ceramic became denser by increasing LiSbO3 doping amount x. Being indexed by XRD profiles, the ceramics changed from an orthorhombic perovskite structure to a tetragonal one across a composition region of 0.04 ≤ x≤0.05. The sample of LiSbO3 doping amount x = 0.05 in tetragonal side of the region had the maximum values of piezoelectric constant (d 33 = 256 pC/N) and planar electromechanical coupling coefficient (k p = 42.7%). Meanwhile, this ceramic sample showed other good properties such as ε r = 1,463, tgδ = 0.036, Q m = 48, P r = 19.8 μC/cm2, E c = 1.9 kV/mm and T c = 340 °C, which indicated it was a promising lead-free piezoelectric material for ultrasonic transducer applications.  相似文献   

8.
Lead-free (1-x)K0.49Na0.51NbO3-xLiNbO3 (KNN-LN, x = 0 ~ 0.08) piezoelectric ceramics were prepared by the conventional solid-state sintering method. The effects of LiNbO3 doping amount x on the phase transition behavior and the electrical properties of KNN-LN ceramics were investigated. By increasing LiNbO3 doping amount x, the orthorhombic-tetragonal polymorphic phase transition (PPT) temperature (T o–t) of KNN-LN ceramics shifted downwards, however, the Curie temperature (T c) slightly moved upwards. The room temperature phase structure thus changed from orthorhombic to tetragonal across the compositions with 0.05 ≤ x ≤ 0.06, named as PPT region. The composition with x = 0.06 in the tetragonal side of PPT region exhibited optimized electrical properties of d 33 = 246pC/N, k p = 41.6%, ε r = 679, tgδ = 0.028, and Q m = 52. In addition to its very high T c = 467 °C, this ceramic can be an excellent candidate for replacing the lead-based piezoceramics in high temperature applications.  相似文献   

9.
Ca1−3x/2Nd x Cu3Ti4O12 (x = 0, 0.1, 0.2) ceramics were prepared by a solid state reaction process, and single-phased structures were obtained for all the compositions. The dielectric characteristics of pure and Nd-substituted CaCu3Ti4O12 ceramics were investigated together with the microstructures. The mixed-valent structures of Cu+/Cu2+ and Ti3+/Ti4+ in the present ceramics were confirmed by X-ray photoelectron analysis. The dielectric relaxation in the low temperature range was examined in detail and the variation of dielectric constant and dielectric loss was attributed to the modification mixed-valent structures.  相似文献   

10.
Solid state reaction technique was employed to synthesize Ba(Nb0.2Ti0.8)O3 [BNT], and 0.9Ba(Nb0.2Ti0.8)O3 + 0.1BaZrO3 [BNT + BZ] samples. Sintered pellets were investigated for its dielectric (εr and tanδ) properties in the temperature range 100 K–380 K and in the frequency range of 100 Hz–1 MHz. The variation of εr and tan δ may be attributed to hopping of trapped charge carriers, which resulted in an extra dielectric response in addition to the dipole response. Hysteresis loop measurements were studied in the temperature regime 295 K–423 K. Loop area shrunk with the increase of temperature that may be due to phase transition from ferroelectric to paraelectric state.  相似文献   

11.
In this paper, the structural and dielectric properties of BNO (BiNbO4) was investigated as a function of the external RF frequency and temperature. The BNO Ceramics, prepared by the conventional mixed oxide method and doped with 3, 5 and 10 wt. % Bi2O3–PbO were sintered at 1,025 °C for 3 h. The X-ray diffraction patterns of the samples sintered, shown the presence of the triclinic phase (β-BNO). In the measurements obtained at room temperature (25 °C) was observed that the largest values of dielectric permittivity (ε r ) at frequency 100 kHz, were for the samples: BNO5Bi (5 wt. % Bi2O3) and BNO5Pb (5 wt. % PbO) with values ε r ~ 59.54 and ε r ~ 78.44, respectively. The smaller values of loss tangent (tan δ) were for the samples: BNO5Bi and BNO3Pb (3 wt. % PbO) with values tan δ ~ 5.71 × 10−4 and tan δ ~ 2.19 × 10−4, respectively at frequency 33.69 MHz. The analysis as a function of temperature of the dielectric properties of the samples, obtained at frequency 100 kHz, showed that the larger value of the relative dielectric permittivity was about ε r ~ 76.4 at temperature 200 °C for BNO5Pb sample, and the value smaller observed of dielectric loss was for BNO3Bi sample at temperature 80 °C, with about tan δ ~ 5.4 × 10−3. The Temperature Coefficient of Capacitance (TCC) values at 1 MHz frequency, present a change of the signal from BNO (−55.06 ppm/°C) to the sample doped of Bi: BNO3Bi (+86.74 ppm/°C) and to the sample doped of Pb: BNO3Pb (+208.87 ppm/°C). One can conclude that starting from the BNO one can increase the doping level of Bi or Pb and find a concentration where one have TCC = 0 ppm/°C, which is important for temperature stable materials applications like high frequency capacitors. The activation energy (H) obtained in the process is approximately 0.55 eV for BNO sample and increase with the doping level. These samples will be studied seeking the development ceramic capacitors for applications in radio frequency devices.  相似文献   

12.
Polycrystalline samples of Ba4Ln2Fe2Ta8O30 (Ln = La and Nd) were prepared by a high temperature solid-state reaction technique. The formation, structure, dielectric and ferroelectric properties of the compounds were studied. Both compounds are found to be paraelectrics with filled tetragonal tungsten bronze (TB) structure at room temperature. Dielectric measurements revealed that the present ceramics have exceptional temperature stability, a relatively small temperature coefficient of dielectric constant (τ ε ) of −25 and −58 ppm/°C, with a high dielectric constant of 118 and 96 together with a low dielectric loss of 1.2 × 10−3 and 2.8 × 10−3 (at 1 MHz) for Ba4La2Fe2Ta8O30 and Ba4Nd2Fe2Ta8O30, respectively. The measured dielectric properties indicate that both materials are possible candidates for the fabrication of discrete multilayer capacitors in microelectronic technology.  相似文献   

13.
Bi1.05−xDyxFeO3 (BDFO) (x = 0−0.2) ceramics were synthesized by solid-state reaction method. The influence of Dy dopant on crystal structural, dielectric and ferroelectric properties was investigated. The lattice parameter and the Curie temperature of BDFO were degraded continuously with increasing contents of Dy3+ cations. Leakage current density, ferroelectric polarization and dielectric loss were improved by appropriate Dy doping. When x = 0.1, BDFO showed the best electric properties. At applied electric field of 53 kV/cm, the remnant polarization (2P r ) was 12.2 μC/cm2.These improvements in electric properties in BDFO ceramics could have resulted from the relatively low oxygen vacancy concentration and structural distortion.  相似文献   

14.
Ca4-xMgxLa2Ti5O17 ceramics were prepared by a solid state ceramic route for x = 0, 0.5, 1, 2, 3 and 4. The structure and microstructure of the ceramics were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction results show that the Ca4-x Mg x La2Ti5O17 adopts an orthorhombic crystal structure with no secondary phase observed for x from 0 to 0.5. Secondary phase, MgTiO3 occurs with further increasing doping level (1 ≤ x ≤ 3). When x = 4, mixture phases La0.66TiO2.993, MgTiO3 and a trace of unknown phase coexist. Ca4La2Ti5O17 ceramic exhibits a relative permittivity (εr) ~ 65, quality factor (Q × f) ~13,338 GHz (at ~4.75 GHz), and temperature coefficient of resonant frequency (τ f ) ~ 165 ppm/°C. The sintering temperature was distinctly reduced from 1,580 °C for x = 0 to 1,350 °C for x = 4. With increasing Mg content, εr and τf obviously decrease, while Q × f value initially decreases and then increases. The ceramic for x = 2 shows εr ~ 50, Q × f ~ 9,451 and τ f  ~ 62.5 ppm/°C. By the complete replacement of Ca with Mg, Mg4La2Ti5O17 ceramic sintered at 1,350 °C for 4 h combines a high dielectric permittivity (ε r  = 31), high quality factor (Q × f ~ 15,021) and near-zero temperature coefficient of resonant frequency (τ f  ~ 4.0 ppm/°C). The materials are suitable for microwave applications.  相似文献   

15.
The influences of B2O3 and CuO (BCu, B2O3: CuO = 1:1) additions on the sintering behavior and microwave dielectric properties of LiNb0.6Ti0.5O3 (LNT) ceramics were investigated. LNT ceramics were prepared with conventional solid-state method and sintered at temperatures about 1,100 °C. The sintering temperature of LNT ceramics with BCu addition could be effectively reduced to 900 °C due to the liquid phase effects resulting from the additives. The addition of BCu does not induce much degradation in the microwave dielectric properties. Typically, the excellent microwave dielectric properties of εr = 66, Q × f = 6,210 GHz, and τ f  = 25 ppm/oC were obtained for the 2 wt% BCu-doped sample sintered at 900 °C. Chemical compatibility of silver electrodes and low-fired samples has also been investigated.  相似文献   

16.
Bi4-xNdxTi3O12 (BNT-x, x = 0, 0.25, 0.50, 0.75 and 1.0) thin films were prepared on Pt/Ti/SiO2/Si substrates by a sol–gel method. The microstructure, ferroelectric and dielectric properties of BNT-x thin films were investigated. The single-phase BNT-x thin films were obtained. With increasing Nd content, the preferred orientation changed from random to (117) and surface morphologies changed from the mixture of rod- and plate-like grains to rod-like grains. The Nd substitution improved the ferroelectric and dielectric properties of BTO films. BNT-x films showed better electrical properties at x = 0.50—1.0. BNT-0.75 film exhibited the best electrical properties with remanent polarization (2P r) of 26.6 μC/cm2, dielectric constant (ε r) of 366 (at 1 MHz), dielectric loss (tanδ) of 0.034 (at 1 MHz), leakage current density (J) of ±3.0 × 10−6 A/cm2 (at ± 5 V) and fatigue-free characteristics.  相似文献   

17.
Pure and Zr-substituted CaCu3(Ti1−x Zr x )4O12 (x = 0, 0.01, 0.02, 0.03) ceramics were prepared by the Pechini method. X-ray powder diffraction analysis indicated the formation of single-phase compound, and all the diffraction peaks were completely indexed by the body-centered cubic perovskite-related structure. The effects of Zr4+ ion substituting partially Ti4+ ion on the dielectric properties were investigated in frequency range between 100 Hz and 1 GHz. The low frequency (f ≤ 105 Hz) dielectric constant decreases with Zr substitution and the high frequency (f ≥ 107 Hz) dielectric constant is unchanged. Interestingly, a low-frequency relaxation was observed at room temperature through Zr substitution. The observed dielectric properties in Zr-substituted samples were discussed using the internal barrier layer capacitor model. A corresponding equivalent circuit was adopted to explain the dielectric dispersion. The characteristic frequency of low-frequency relaxation rises due to the decrease of the resistivity of grain boundary with Zr substitution, which is likely responsible for the large low-frequency response at room temperature.  相似文献   

18.
Effects of Fe and La addition on the dielectric, ferroelectric, and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5Li0.5TiO3–BaTiO3–Mn ceramics were investigated. Similar to the doping effect in lead-based piezoelectric materials, here the Fe-doped ceramic created a hard effect with an improved mechanical quality factor (Q m) ~ 160, coercive field (E c) ~ 2.9 kV/mm, decreased dielectric constant ( e33T /e0 ) ~ 80 3, \left( {\varepsilon_{33}^{T} /\varepsilon_{0} } \right)\sim 80 3, and loss (tanδ) ~ 0.024 while the La-doped one indicated a soft feature with improved piezoelectric constant (d 33) ~ 184 pC/N, e33T /e0   ~ 983, \varepsilon_{33}^{T} /\varepsilon_{0} \,\sim { 983}, tanδ ~ 0.033, and decreased E c ~ 2.46 kV/mm. In addition, the temperature dependence of the ferroelectric hysteresis loops and strain response under unipolar electric field was also studied. Around the depolarization temperature T d, large strain value was obtained with the normalized d33* d_{33}^{*} up to ~1,000 pC/N, which was suggested originated from the development of the short-range order or non-polar phases in the ferroelectric matrix. All these would provide a new way to realize high piezoelectric response for practical application in different temperature scale.  相似文献   

19.
The LiCo3/5Fe1/5Mn1/5VO4 compound was successfully synthesized by solution-based chemical method. The variation of dielectric constant (εr) with frequency at different temperatures shows a dispersive behavior at low frequencies. Temperature dependence of εr at different frequencies indicates dielectric anomalies in εr at temperature (Tmax) = 220, 235, 245, 260 and 275 °C with (εr)max ~ 6,830, 2,312, 1,224, 649 and 305 for 10, 50, 100, 200 and 500 kHz, respectively. The variation of tangent loss with frequency at different temperatures shows the presence of dielectric relaxation in the material. The variation of relaxation time as a function of temperature follows the Vogel-Fulcher relation.  相似文献   

20.
Gd3+ was chosen as a substitute for Bi3+ in BiNbO4 ceramics, and the substitution effects on the sintering performance and microwave dielectric properties were studied in this paper. The high temperature triclinic phase was observed only in the Bi0.98Gd0.02NbO4 ceramics when sintered at 920 °C. Both bulk densities and dielectric constant (εr) increased with the sintering temperature, while decreased with the Gd content. The quality factor (Q) exhibited a correlation to the Gd content and the microstructures of Bi1−x Gd x NbO4 ceramics. At the sintering temperature of 900 °C, Bi0.992Gd0.008NbO4 ceramics exhibited microwave dielectric properties of εr ∼ 43.87, Q × f ∼ 16,852 GHz (at 4.3 GHz), and its temperature coefficient of resonant frequency (τf) was found to be near-to-zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号