首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work deliberately introduces collective-rotation noise into quantum states to prevent an intercept-resend attack on Zhang’s quantum secret sharing scheme over a collective-noise quantum channel (Zhang in Phys A 361:233–238, 2006). The noise recovering capability of the scheme remains intact. With this design, the quantum bit efficiency of the protocol is doubled when compared to Sun et al.’s improvement on Zhang’s scheme (Sun et al. in Opt Commun 283:181–183, 2010).  相似文献   

2.
Shu-Xin Miao  Bing Zheng 《Calcolo》2009,46(4):261-266
Comparison theorems between the spectral radii of different matrices are a useful tool for judging the efficiency of preconditioners. For single splittings of different monotone matrices, Elsner et al. (Linear Algebra Appl. 363:65–80, 2003) gave out comparison theorems for spectral radii. For double splittings, some convergence and comparison theorems of a monotone matrix are presented by Shen et al. (Comput. Math. Appl. 51:1751–1760, 2006). In this note we give the comparison theorem for the spectral radii of matrices arising from double splittings of different monotone matrices.  相似文献   

3.
In this paper we continue the study, which was initiated in (Ben-Artzi et al. in Math. Model. Numer. Anal. 35(2):313–303, 2001; Fishelov et al. in Lecture Notes in Computer Science, vol. 2667, pp. 809–817, 2003; Ben-Artzi et al. in J. Comput. Phys. 205(2):640–664, 2005 and SIAM J. Numer. Anal. 44(5):1997–2024, 2006) of the numerical resolution of the pure streamfunction formulation of the time-dependent two-dimensional Navier-Stokes equation. Here we focus on enhancing our second-order scheme, introduced in the last three afore-mentioned articles, to fourth order accuracy. We construct fourth order approximations for the Laplacian, the biharmonic and the nonlinear convective operators. The scheme is compact (nine-point stencil) for the Laplacian and the biharmonic operators, which are both treated implicitly in the time-stepping scheme. The approximation of the convective term is compact in the no-leak boundary conditions case and is nearly compact (thirteen points stencil) in the case of general boundary conditions. However, we stress that in any case no unphysical boundary condition was applied to our scheme. Numerical results demonstrate that the fourth order accuracy is actually obtained for several test-cases.  相似文献   

4.
Preventing micro-channels from clogging is a major issue in most micro and nanofluidic systems (Gravesen et al., J Micromech Microeng 3(4):168–182, 1993; Jensen et al., In: Proc. of MicroTAS 2002, Nara, Japan, pp 733–735, 2002; Wong et al., J Fluid Mech 292:71–94, 1995). The T-shaped channel first reported by Kohnle et al. (In: IEEE MEMS, the 15th international IEEE micro electro mechanical conference (ed), Las Vegas, pp 77–80, 2002) prevents micro-channels from clogging by the aid of the equilibrium bubble position in such a geometry. This work is concerned with the static and dynamic behaviour of bubbles in such T-shaped micro-channels. The aspect ratio of a rectangle enclosing the T-shaped channel and the contact angle of the walls are the main parameters influencing the static and dynamic bubble behaviour. It is investigated in this article how these parameters relate to the equilibrium bubble shape and how optimum bubble velocities can be achieved inside the channel. An analytical model depending on the contact angle and the channel geometry is presented that allows to determine the bubble configuration inside the channel by minimizing the bubble’s surface energy. A second model is derived to predict the velocity of gas bubbles driven by buoyancy in vertical T-shaped channels. The model is applied to design T-shaped channels with a maximum mobility of gas bubbles. Experiments with MEMS fabricated devices and CFD simulations are used to verify the models. Furthermore design rules for an optimum non-clogging channel geometry which provides the highest gas bubble mobility are given.  相似文献   

5.
Transaction-level modeling is used in hardware design for describing designs at a higher level compared to the register-transfer level (RTL) (e.g. Cai and Gajski in CODES+ISSS ’03: proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, pp. 19–24, 2003; Chen et al. in FMCAD ’07: proceedings of the formal methods in computer aided design, pp. 53–61, 2007; Mahajan et al. in MEMOCODE ’07: proceedings of the 5th IEEE/ACM international conference on formal methods and models for codesign, pp. 123–132, 2007; Swan in DAC ’06: proceedings of the 43rd annual conference on design automation, pp. 90–92, 2006). Each transaction represents a unit of work, which is also a useful unit for design verification. In such models, there are many properties of interest which involve interactions between multiple transactions. Examples of this are ordering relationships in sequential processing and hazard checking in pipelined circuits. Writing such properties on the RTL design requires significant expertise in understanding the higher-level computation being done in a given RTL design and possible instrumentation of the RTL to express the property of interest. This is a barrier to the easy use of such properties in RTL designs.  相似文献   

6.
A key technique for the verification of programs is counterexample-guided abstraction–refinement (CEGAR). Grumberg et al. (LNCS, vol 3385, pp. 233–249. Springer, Berlin, 2005; Inf Comput 205(8):1130–1148, 2007) developed a CEGAR-based algorithm for the modal μ-calculus. There, every abstract state is split in a refinement step. In this paper, the work of Grumberg et al. is generalized by presenting a new CEGAR-based algorithm for the μ-calculus. It is based on a more expressive abstract model and applies refinement only locally (at a single abstract state), i.e., the lazy abstraction technique for safety properties is adapted to the μ-calculus. Furthermore, it separates refinement determination from the (3-valued based) model checking. Three different heuristics for refinement determination are presented and illustrated.  相似文献   

7.
The weighted essentially non-oscillatory (WENO) methods are a popular high-order spatial discretization for hyperbolic partial differential equations. Recently Henrick et al. (J. Comput. Phys. 207:542–567, 2005) noted that the fifth-order WENO method by Jiang and Shu (J. Comput. Phys. 126:202–228, 1996) is only third-order accurate near critical points of the smooth regions in general. Using a simple mapping function to the original weights in Jiang and Shu (J. Comput. Phys. 126:202–228, 1996), Henrick et al. developed a mapped WENO method to achieve the optimal order of accuracy near critical points. In this paper we study the mapped WENO scheme and find that, when it is used for solving the problems with discontinuities, the mapping function in Henrick et al. (J. Comput. Phys. 207:542–567, 2005) may amplify the effect from the non-smooth stencils and thus cause a potential loss of accuracy near discontinuities. This effect may be difficult to be observed for the fifth-order WENO method unless a long time simulation is desired. However, if the mapping function is applied to seventh-order WENO methods (Balsara and Shu in J. Comput. Phys. 160:405–452, 2000), the error can increase much faster so that it can be observed with a moderate output time. In this paper a new mapping function is proposed to overcome this potential loss of accuracy.  相似文献   

8.
In previous works (Nakao et al., Reliab. Comput., 9(5):359–372, 2003; Watanabe et al., J. Math. Fluid Mech., 6(1):1–20, 2004), the authors considered the numerical verification method of solutions for two-dimensional heat convection problems known as Rayleigh-Bénard problem. In the present paper, to make the arguments self-contained, we first summarize these results including the basic formulation of the problem with numerical examples. Next, we will give a method to verify the bifurcation point itself, which should be an important information to clarify the global bifurcation structure, and show a numerical example. Finally, an extension to the three dimensional case will be described.  相似文献   

9.
In a recent paper Boykov et al. (LNCS, Vol. 3953, pp. 409–422, 2006) propose an approach for computing curve and surface evolution using a variational approach and the geo-cuts method of Boykov and Kolmogorov (International conference on computer vision, pp. 26–33, 2003). We recall in this paper how this is related to well-known approaches for mean curvature motion, introduced by Almgren et al. (SIAM Journal on Control and Optimization 31(2):387–438, 1993) and Luckhaus and Sturzenhecker (Calculus of Variations and Partial Differential Equations 3(2):253–271, 1995), and show how the corresponding problems can be solved with sub-pixel accuracy using Parametric Maximum Flow techniques. This provides interesting algorithms for computing crystalline curvature motion, possibly with a forcing term. A. Chambolle’s research supported by ANR project “MICA”, grant ANR-08-BLAN-0082. J. Darbon’s research supported by ONR grant N000140710810.  相似文献   

10.
Energy usage has been an important concern in recent research on online scheduling. In this paper, we study the tradeoff between flow time and energy (Albers and Fujiwara in ACM Trans. Algorithms 3(4), 2007; Bansal et al. in Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 805–813, 2007b, Bansal et al. in Proceedings of International Colloquium on Automata, Languages and Programming, pp. 409–420, 2008; Lam et al. in Proceedings of European Symposium on Algorithms, pp. 647–659, 2008b) in the multi-processor setting. Our main result is an enhanced analysis of a simple non-migratory online algorithm called CRR (classified round robin) on m≥2 processors, showing that its flow time plus energy is within O(1) times of the optimal non-migratory offline algorithm, when the maximum allowable speed is slightly relaxed. The result still holds even if the comparison is made against the optimal migratory offline algorithm. This improves previous analysis that CRR is O(log P)-competitive where P is the ratio of the maximum job size to the minimum job size.  相似文献   

11.
We study the mathematical modeling and numerical simulation of the motion of red blood cells (RBC) and vesicles subject to an external incompressible flow in a microchannel. RBC and vesicles are viscoelastic bodies consisting of a deformable elastic membrane enclosing an incompressible fluid. We provide an extension of the finite element immersed boundary method by Boffi and Gastaldi (Comput Struct 81:491–501, 2003), Boffi et al. (Math Mod Meth Appl Sci 17:1479–1505, 2007), Boffi et al. (Comput Struct 85:775–783, 2007) based on a model for the membrane that additionally accounts for bending energy and also consider inflow/outflow conditions for the external fluid flow. The stability analysis requires both the approximation of the membrane by cubic splines (instead of linear splines without bending energy) and an upper bound on the inflow velocity. In the fully discrete case, the resulting CFL-type condition on the time step size is also more restrictive. We perform numerical simulations for various scenarios including the tank treading motion of vesicles in microchannels, the behavior of ‘healthy’ and ‘sick’ RBC which differ by their stiffness, and the motion of RBC through thin capillaries. The simulation results are in very good agreement with experimentally available data.  相似文献   

12.
The context-aware services require to efficiently perceive not only the user requirements but also the context of the environment to provide customized services to the user. To efficiently develop the context-aware applications a systematic methodology correctly specifying the relation among dynamically changing contexts is essential. Here the context model simplifying the manipulation of complex contexts is a key accessor for the specification and analysis of the service. Among various modeling approaches such as timed automata (Tang and You in Intell Automat Soft Comput 16(4):605–619, 2010), workflow (Rosemann et al. in Understanding context-awareness in business process design, 2010), Petri net (PN) (J?rgensen et al. in Innovat Syst Softw Eng 5(1):13–25, 2009), etc. developed for context-aware system, the PN-based approach has been recognized as one of the most effective one. In this paper we identify the issues of how the contexts are modeled and what kinds of the requirements needs to be considered in the context processing. We then discuss various Petri net (PN)-based modeling methodologies concerning the five important features for context processing: relationships and dependencies, time constraint, resource constraint, usability of modeling formalisms, and context identification. The study reveals that the approach effectively allowing both the time and resource constraints in the model while supporting other important properties needs to be developed further for accurately assess the context-aware systems. Also, the expandability and scalability issue need to be investigated.  相似文献   

13.
An emerging trend in DNA computing consists of the algorithmic analysis of new molecular biology technologies, and in general of more effective tools to tackle computational biology problems. An algorithmic understanding of the interaction between DNA molecules becomes the focus of some research which was initially addressed to solve mathematical problems by processing data within biomolecules. In this paper a novel mechanism of DNA recombination is discussed, that turned out to be a good implementation key to develop new procedures for DNA manipulation (Franco et al., DNA extraction by cross pairing PCR, 2005; Franco et al., DNA recombination by XPCR, 2006; Manca and Franco, Math Biosci 211:282–298, 2008). It is called XPCR as it is a variant of the polymerase chain reaction (PCR), which was a revolution in molecular biology as a technique for cyclic amplification of DNA segments. A few DNA algorithms are proposed, that were experimentally proven in different contexts, such as, mutagenesis (Franco, Biomolecular computing—combinatorial algorithms and laboratory experiments, 2006), multiple concatenation, gene driven DNA extraction (Franco et al., DNA extraction by cross pairing PCR, 2005), and generation of DNA libraries (Franco et al., DNA recombination by XPCR, 2006), and some related ongoing work is outlined.  相似文献   

14.
Modeling the dependence of credit ratings is an important issue for portfolio credit risk analysis. Multivariate Markov chain models are a feasible mathematical tool for modeling the dependence of credit ratings. Here we develop a flexible multivariate Markov chain model for modeling the dependence of credit ratings. The proposed model provides a parsimonious way to capture both the cross-sectional and temporal associations among ratings of individual entities. The number of model parameters is of the magnitude O(sm 2 + s 2 m), where m is the number of ratings categories and s is the number of entities in a credit portfolio. The proposed model is also easy to implement. The estimation method is formulated as a set of s linear programming problems and the estimation algorithm can be implemented easily in a Microsoft EXCEL worksheet, see Ching et al. Int J Math Educ Sci Eng 35:921–932 (2004). We illustrate the practical implementation of the proposed model using real ratings data. We evaluate risk measures, such as Value at Risk and Expected Shortfall, for a credit portfolio using the proposed model and compare the risk measures with those arising from Ching et al. IMRPreprintSeries (2007), Siu et al. Quant Finance 5:543–556 (2005).  相似文献   

15.
The problem of clustering fingerprint vectors with missing values is an interesting problem in Computational Biology that has been proposed in Figueroa et al. (J. Comput. Biol. 11(5):887–901, 2004). In this paper we show some improvements in closing the gaps between the known lower bounds and upper bounds on the approximability of variants of the biological problem. Moreover, we have studied two additional variants of the original problem proposed in Figueroa et al. (Proc. 11th Computing: The Australasian Theory Symposium (CATS), CRPIT, vol. 41, pp. 57–60, 2005). We prove that all such problems are APX-hard even when each fingerprint contains only two unknown positions and we present a greedy algorithm that has constant approximation factors for these variants. Despite the hardness of these restricted versions of the problem, we show that the general clustering problem on an unbounded number of missing values such that they occur for every fixed position of an input vector in at most one fingerprint is polynomial time solvable.  相似文献   

16.
This article reports the results of an extensive experimental analysis of efficient algorithms for computing graph spanners in the data streaming model, where an (α,β)-spanner of a graph G is a subgraph SG such that for each pair of vertices the distance in S is at most α times the distance in G plus β. To the best of our knowledge, this is the first computational study of graph spanner algorithms in a streaming setting. We compare experimentally the randomized algorithms proposed by Baswana () and by Elkin (In: Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP 2007), Wroclaw, Poland, pp. 716–727, 9–13 July 2007) for general stretch factors with the deterministic algorithm presented by Ausiello et al. (In: Proceedings of the 15th Annual European Symposium on Algorithms (ESA 2007), Engineering and Applications Track, Eilat, Israel, 8–10 October 2007. LNCS, vol. 4698, pp. 605–617, 2007), designed for building small stretch spanners. All the algorithms we implemented work in a data streaming model where the input graph is given as a stream of edges in arbitrary order, and all of them need a single pass over the data. Differently from the algorithm in Ausiello et al., the algorithms in Baswana () and Elkin (In: Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP 2007), Wroclaw, Poland, pp. 716–727, 9–13 July 2007) need to know in advance the number of vertices in the graph. The results of our experimental investigation on several input families confirm that all these algorithms are very efficient in practice, finding spanners with stretch and size much smaller than the theoretical bounds and comparable to those obtainable by off-line algorithms. Moreover, our experimental findings confirm that small values of the stretch factor are the case of interest in practice, and that the algorithm by Ausiello et al. tends to produce spanners of better quality than the algorithms by Baswana and Elkin, while still using a comparable amount of time and space resources. Work partially supported by the Italian Ministry of University and Research under Project MAINSTREAM “Algorithms for Massive Information Structures and Data Streams”. A preliminary version of this paper was presented at the 15th Annual European Symposium on Algorithms (ESA 2007) 5.  相似文献   

17.
The problem of maximization of the depth of penetration of rigid impactor into semi-infinite solid media (concrete shield) is investigated analytically and numerically using two-stage model and experimental data of Forrestal and Tzou (Int J Solids Struct 34(31–32):4127–4146, 1997). The shape of the axisymmetric rigid impactor has been taken as an unknown design variable. To solve the formulated optimization problem for nonadditive functional, we expressed the depth of penetration (DOP) under some isoperimetric constraints. We apply approaches based on analytical and qualitative variational methods and numerical optimization algorithm of global search. Basic attention for considered optimization problem was given to constraints on the mass of penetrated bodies, expressed by the volume in the case of penetrated solid body and by the surface area in the case of penetrated thin-walled rigid shell. As a result of performed investigation, based on two-term and three-term two stage models proposed by Forrestal et al. (Int J Impact Eng 15(4):396–405, 1994), Forrestal and Tzou (Int J Solids Struct 34(31–32):4127–4146, 1997) and effectively developed by Ben-Dor et al. (Comp Struct 56:243–248, 2002, Comput Struct 81(1):9–14, 2003a, Int J Solids Struct 40(17):4487–4500, 2003b, Mech Des Struct Mach 34(2): 139–156, 2006), we found analytical and numerical solutions and analyzed singularities of optimal forms.  相似文献   

18.
We study the on-line minimum weighted bipartite matching problem in arbitrary metric spaces. Here, n not necessary disjoint points of a metric space M are given, and are to be matched on-line with n points of M revealed one by one. The cost of a matching is the sum of the distances of the matched points, and the goal is to find or approximate its minimum. The competitive ratio of the deterministic problem is known to be Θ(n), see (Kalyanasundaram, B., Pruhs, K. in J. Algorithms 14(3):478–488, 1993) and (Khuller, S., et al. in Theor. Comput. Sci. 127(2):255–267, 1994). It was conjectured in (Kalyanasundaram, B., Pruhs, K. in Lecture Notes in Computer Science, vol. 1442, pp. 268–280, 1998) that a randomized algorithm may perform better against an oblivious adversary, namely with an expected competitive ratio Θ(log n). We prove a slightly weaker result by showing a o(log 3 n) upper bound on the expected competitive ratio. As an application the same upper bound holds for the notoriously hard fire station problem, where M is the real line, see (Fuchs, B., et al. in Electonic Notes in Discrete Mathematics, vol. 13, 2003) and (Koutsoupias, E., Nanavati, A. in Lecture Notes in Computer Science, vol. 2909, pp. 179–191, 2004). The authors were partially supported by OTKA grants T034475 and T049398.  相似文献   

19.
In this article, we propose a new construction of probabilistic collusion-secure fingerprint codes against up to three pirates and give a theoretical security evaluation. Our pirate tracing algorithm combines a scoring method analogous to Tardos codes (J ACM 55:1–24, 2008) with an extension of parent search techniques of some preceding 2-secure codes. Numerical examples show that our code lengths are significantly shorter than (about 30–40% of) the shortest known c-secure codes by Nuida et al. (Des Codes Cryptogr 52:339–362, 2009) with c = 3.  相似文献   

20.
In this work we show that the generating N-photon Greenberger–Horne–Zeilinger entangled state protocol proposed by Xia et al. (Appl Phys Lett 92(1–3):021127, 2008) which can be realized by a simpler optical setup and with a higher success probability. The present protocol setup involves simple linear optical elements, N single-photon superposition states and conventional photon detectors. This makes the protocol more realizable in experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号