首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we employed the neuroblastoma x glioma NG 108-15 cell line as a model for investigating the effects of long-term activation of cannabinoid receptors on delta opioid receptor desensitization, down-regulation and gene expression. Exposure of NG 108-15 cells to (-)-delta9-tetrahydrocannabinol (delta9-THC) reduced opioid receptor binding, evaluated in intact cells, by approximately 40-45% in cells exposed for 24 h to 50 and 100 nM delta9-THC and by approximately 25% in cells exposed to 10 nM delta9-THC. Lower doses of delta9-THC (0.1 and 1 nM) or a shorter exposure time to the cannabinoid (6 h) were not effective. Down-regulation of 6 opioid receptors was not observed in cells exposed for 24 h to pertussis toxin (PTX) and then treated for 24 h with 100 nM delta9-THC. In cells that were exposed for 24 h to the cannabinoid, the ability of delta9-THC and of the delta opioid receptor agonist [D-Ser2, Leu5, Thr6]enkephalin to inhibit forskolin-stimulated cAMP accumulation was significantly attenuated. Prolonged exposure of NG 108-15 cells to 100 nM delta9-THC produced a significant elevation of steady-state levels of delta opioid receptor mRNA. This effect was not observed in cells pretreated with PTX. The selective cannabinoid receptor antagonist SR 141716A blocked the effects elicited by delta9-THC on delta opioid receptor desensitization, down-regulation and gene expression; thus indicating that these are mediated via activation of cannabinoid receptors. These data demonstrate the existence, in NG 108-15 cells, of a complex cross-talk between the cannabinoid and opioid receptors on prolonged exposure to delta9-THC triggered by changes in signaling through Gi and/or G0-coupled receptors.  相似文献   

2.
An endogenous cannabimimetic molecule, 2-arachidonoylglycerol, induces a rapid, transient increase in intracellular free Ca2+ concentrations in NG108-15 cells through a cannabinoid CB1 receptor-dependent mechanism. We examined the activities of 24 relevant compounds (2-arachidonoylglycerol, its structural analogues, and several synthetic cannabinoids). We found that 2-arachidonoylglycerol is the most potent compound examined so far: its activity was detectable from as low as 0.3 nM, and the maximal response induced by 2-arachidonoylglycerol exceeded the responses induced by others. Activities of HU-210 and CP55940, potent cannabinoid receptor agonists, were also detectable from as low as 0.3 nM, whereas the maximal responses induced by these compounds were low compared with 2-arachidonoylglycerol. Anandamide was also found to act as a partial agonist in this assay system. We confirmed that free arachidonic acid failed to elicit a response. Furthermore, we found that a metabolically stable ether-linked analogue of 2-arachidonoylglycerol possesses appreciable agonistic activity, although its activity was apparently lower than that of 2-arachidonoylglycerol. We also confirmed that pretreating cells with various cannabinoid receptor agonists nullified the response induced by 2-arachidonoylglycerol, whereas pretreating cells with other neurotransmitters or neuromodulators did not affect the response. These results strongly suggested that the cannabinoid CB1 receptor is originally a 2-arachidonoylglycerol receptor, and 2-arachidonoylglycerol is the intrinsic physiological ligand for the cannabinoid CB1 receptor.  相似文献   

3.
Endomorphin-1 and -2, recently isolated endogenous peptides specific for the mu-opioid receptor, inhibited Ca2+ channel currents with EC50 of 6 and 9 nM, respectively, in NG108-15 cells transformed to express the cloned rat mu-opioid receptor. On the other hand, they elicited no response in nontransfected NG108-15 cells. It is concluded that endomorphin-1 and -2 induce Ca2+ channel inhibition by selectively activating the mu-opioid receptor.  相似文献   

4.
The binding of [123I]AM251 (a radioiodinated analog of the cannabinoid CB1 receptor antagonist SR141716A) was compared to that of [3H]CP 55,940 in mouse and rat brain preparations. Scatchard analysis of the binding of [123I]AM251 and [3H]CP 55,940 to membranes prepared from mouse cerebellum, striatum and hippocampus yielded similar Bmax values (15-41 pmol/g wet wt tissue). Kd values were lower for [123I]AM251 (0.23-0.62 nM) than for [3H]CP 55,940 (1.3-4 nM). CP 55,940 and SR141716A increased dissociation of [123I]AM251 from binding sites in mouse cerebellar homogenates to a similar extent. The structurally dissimilar cannabinoid receptor ligands THC, methanandamide, WIN 55, 212-2, CP 55,940 and SR141716A were each able to fully compete with binding of both [123I]AM251 and [3H]CP 55,940 in mouse cerebellum. In vitro autoradiography demonstrated that the distribution of binding sites for [123I]AM251 in rat brain was very similar to published distributions of binding sites for [3H]CP 55,940. Together, these observations suggest that AM251 binds to the same site (the cannabinoid CB1 receptor) in rodent brains as CP 55,940. However, the binding site domains which interact with AM251 and CP 55,940 may not be identical, since IC50 values for cannabinoid receptor ligands depended on whether [123I]AM251 or [3H]CP 55,940 was used as radioligand.  相似文献   

5.
Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.  相似文献   

6.
We have investigated whether there are cannabinoid CB2 receptors that can mediate cannabinoid-induced inhibition of electrically evoked contractions in the mouse vas deferens or guinea-pig myenteric plexus-longitudinal muscle preparation. Our results showed that mouse vas deferens and guinea-pig whole gut contain cannabinoid CB1 and CB2-like mRNA whereas the myenteric plexus preparation seemed to contain only cannabinoid CB1 mRNA. JWH-015 (1-propyl-2-methyl-3-( -naphthoyl)indole) and JWH-051 (1-deoxy-11-hydroxy-delta8-tetrahydrocannabinol-dimethylheptyl+ ++), which have higher affinities for CB2 than CB1 cannabinoid binding sites, inhibited electrically evoked contractions of both tissues in a concentration related manner. This inhibition was attenuated by 31.62 nM of the cannabinoid CB1 receptor selective antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride] only in the myenteric plexus preparation. Vasa deferentia from delta9-tetrahydrocannabinol-pretreated mice (20 mg/kg i.p. once daily for two days) showed reduced sensitivity to JWH-015 and JWH-051. The results suggest that these compounds exert their inhibitory effects through cannabinoid CB1 receptors in the myenteric plexus preparation, but mainly through CB2-like cannabinoid receptors in the vas deferens.  相似文献   

7.
8.
We have previously shown that the activation of the AT2 receptor of Ang II induced neurite outgrowth in NG108-15 cells. We also found that stimulation of NG108-15 cells with Ang II induced a rapid decrease in GTP-bound p21ras. In order to investigate the possible role of p21ras in Ang II-induced neuronal differentiation, we have established NG108-15 sublines which inducibly express a dominant inhibitory form of p21ras (p21N17Ras). We observed that IPTG-induced expression of p21N17Ras in these NG108-15 sublines induced the same morphological changes as does Ang II in control untransfected cells. Immunofluorescence labeling of beta-tubulin showed that expression of p21N17Ras induced neurite outgrowth and elongation. These observations were supported by Western blot analysis of the level of polymerized tubulin. These results strongly support the hypothesis that AT2 receptor-induced neuronal differentiation in NG108-15 cells is mediated by the inhibition of p21ras.  相似文献   

9.
Fatty acid amide hydrolase (FAAH) catalyzes the hydrolysis of bioactive fatty acid amides and esters such as the endogenous cannabinoid receptor ligands, anandamide (N-arachidonoyl-ethanolamine) and 2-arachidonoylglycerol, and the putative sleep inducing factor cis-9-octadecenoamide (oleamide). Most FAAH blockers developed to date also inhibit cytosolic phospholipase A2 (cPLA2) and/or bind to the CB1 cannabinoid receptor subtype. Here we report the finding of four novel FAAH inhibitors, two of which, malhamensilipin A and grenadadiene, were screened out of a series of thirty-two different algal natural products, and two others, arachidonoylethylene glycol (AEG) and arachidonoyl-serotonin (AA-5-HT) were selected out of five artificially functionalized polyunsaturated fatty acids. When using FAAH preparations from mouse neuroblastoma N18TG2 cells and [14C]anandamide as a substrate, the IC50s for these compounds ranged from 12.0 to 26 microM, the most active compound being AA-5-HT. This substance was also active on FAAH from rat basophilic leukaemia (RBL-2H3) cells (IC50 = 5.6 microM), and inhibited [14C]anandamide hydrolysis by both N18TG2 and RBL-2H3 intact cells without affecting [14C]anandamide uptake. While AEG behaved as a competitive inhibitor and was hydrolyzed to arachidonic acid (AA) by FAAH preparations, AA-5-HT was resistant to FAAH-catalyzed hydrolysis and behaved as a tight-binding, albeit non-covalent, mixed inhibitor. AA-5-HT did not interfere with cPLA2-mediated, ionomycin or antigen-induced release of [3H]AA from RBL-2H3 cells, nor with cPLA2 activity in cell-free experiments. Finally, AA-5-HT did not activate CB1 cannabinoid receptors since it acted as a very weak ligand in in vitro binding assays, and, at 10-15 mg/kg body weight, it was not active in the 'open field', 'hot plate' and rectal hypothermia tests carried out in mice. Conversely AEG behaved as a cannabimimetic substance in these tests as well as in the 'ring' immobility test where AA-5-HT was also active. AA-5-HT is the first FAAH inhibitor reported to date which is inactive both against cPLA2 and at CB1 receptors, whereas AEG represents a new type of cannabinoid receptor agonist.  相似文献   

10.
Mono iodinated analogues of biphalin [(Tyr-D-Ala-Gly-Phe-NH-)2], both nonradioactive [I-Tyr1]biphalin and radioactive [125I-Tyr1]biphalin have been synthesized. The radioligand binding profiles of these compounds for two types of tissues, rat brain membranes, and NG108-15 cell membranes were identical to the parent biphalin. This is additional evidence for the hypothesis that biphalin behaves like a monomeric ligand and that only one intact tyrosine is necessary for high biological activity. The second tyrosine could be used for successful radioiodination which may greatly simplify biochemical and pharmacological studies of biphalin. The results of receptor binding studies show that the binding of both biphalin and [I-Tyr1]biphalin to the delta and mu opioid receptors are not independent. [125I-Tyr1]Biphalin binds to delta receptors as shown in NG108-15 cell membranes. Nevertheless, [125I]biphalin binding to delta receptors in rat brain membranes was hardly evident and mu receptor binding predominated or at least was much more readily detectable in this preparation.  相似文献   

11.
12.
Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 [[1alpha,2beta(R)5alpha]-(-)-5-(1,1-dimethylheptyl+ ++)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol], and the specific antagonist SR 141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H] dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 microM) and anandamide (10 microM) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 microM). CP 55940 (1 microM) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelied striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献   

13.
The endothelin (ET) peptides have been identified in the CNS, but there is a paucity of information on their physiological roles. NG108-15 cells, a clonal strain of a neuroblastoma x glioma hybrid cell line, have been widely used in neurobiological research since they retain certain differentiated properties of the non-transformed parental cells. It is known that NG108-15 cells respond to the ET peptides, but only limited information is available on the characterization of the ET receptors that mediate these effects. The present study was designed to identify the type(s) of ET receptors on NG108-15 cells in a proliferative state by competitive binding assays using [125I]ET-1 as the radiolabelled ligand and the receptor-selective ligands. ET-1, ET-3, BQ-123, sarafatoxin-6-c and [Ala1,3,11,15]ET-1. The results suggested the presence of conventional ETA and ETB receptor subtypes, with ETA in excess over ETB. These findings were consistent with the results of Northern analysis in that mRNAs encoding the ETA and ETB receptor subtypes were identified in NG108-15 cells, with a preponderance of ETA to ETB. Of considerable interest was the observation of other ET-binding components with much higher affinities than the conventional receptors. It remains to be demonstrated if these particular binding components are functional and represent differ gene products or arise from association of the conventional ETA and ETB receptor subtypes with themselves or other structures, e.g. proteins or lipids, of CNS origin.  相似文献   

14.
Cyclic ADP-ribose (cADP-ribose) is an endogenous modulator of ryanodine-sensitive Ca2+ release channels. An unsolved question is whether or not cADP-ribose mediates intracellular signals from hormone or neurotransmitter receptors. The first step in this study was to develop a TLC method to measure ADP-ribosyl cyclase, by which conversion of [3H]NAD+ to [3H]cADP-ribose was confirmed in COS-7 cells overexpressing human CD38. A membrane fraction of NG108-15 neuroblastoma x glioma hybrid cells possessed ADP-ribosyl cyclase activity measured by TLC. Carbamylcholine increased this activity by 2.6-fold in NG108-15 cells overexpressing m1 or m3 muscarinic acetylcholine receptors (mAChRs), but inhibited it by 30-52% in cells expressing m2 and/or m4 mAChRs. Both of these effects were mimicked by GTP. Pretreatment of cells with cholera toxin blocked the activation, whereas pertussis toxin blocked the inhibition. Application of carbamylcholine caused significant decreases in NAD+ concentrations in untreated m1-transformed NG108-15 cells, but an increase in cholera toxin-treated cells. These results suggest that mAChRs couple to ADP-ribosyl cyclase within cell membranes via trimeric G proteins and can thereby control cellular function by regulating cADP-ribose formation.  相似文献   

15.
Numerous reports have suggested that increased synthesis of eicosanoids is a significant effect of cannabinoids in several models including the human. To address the question of receptor mediation in this process we have carried out experiments using oligonucleotides that are antisense to the CB1 and to the CB2 receptors. We have synthesized sense, antisense and random oligonucleotide probes to test for receptor involvement in THC stimulation of arachidonic acid release in three cell lines of both central and peripheral origin. Treatment of N18 mouse neuroblastoma cells with the CB1 antisense probe, at two concentrations, resulted in a dramatic decrease of THC stimulated arachidonate release while treatment with antisense CB2 was less effective. Synthesis of the novel eicosanoid, anandamide, was also reduced by antisense CB1 but not by antisense CB2. Western blot analysis indicated a decreased level of CB1 in CB1 antisense treated cells. The CB1 antagonist, SR141716A, was effective in reducing the THC elevated levels of free arachidonate in these cells in agreement with the antisense data. In the macrophage line, RAW 264.7, we found that while the sense, the random and the CB1 antisense oligonucleotides were ineffective, the CB2 antisense probe gave significant reductions of the THC induced response. The CB2 probe was also effective in reducing the release of arachidonate in WI-38 human lung fibroblasts. These findings support the idea of a receptor mediated process for cannabinoid stimulation of eicosanoid synthesis.  相似文献   

16.
The CB1 cannabinoid receptor antagonist SR 141716A abolished the inhibition of Ca2+ currents by the agonist WIN 55,212-2. However, SR 141716A alone increased Ca2+ currents, with an EC50 of 32 nM, in neurons that had been microinjected with CB1 cRNA. For an antagonist to elicit an effect, some receptors must be tonically active. Evidence for tonically active CB1 receptors was seen as enhanced tonic inhibition of Ca2+ currents. Preincubation with anandamide failed to enhance the effect of SR 141716A, indicating that anandamide did not cause receptor activity. Under Ca2+-free conditions designed to block the Ca2+-dependent formation of anandamide and sn-2-arachidonylglycerol, SR 141716A again increased the Ca2+ current. The Ca2+ current was tonically inhibited in neurons expressing the mutant K192A receptor, which has no affinity for anandamide, demonstrating that this receptor is also tonically active. SR 141716A had no effect on the Ca2+ current in these neurons, but SR 141716A could still antagonize the effect of WIN 55, 212-2. Thus, the K192 site is critical for the inverse agonist activity of SR 141716A. SR 141716A appeared to become a neutral antagonist at the K192A mutant receptor. Native cannabinoid receptors were studied in male rat major pelvic ganglion neurons, where it was found that WIN 55,212-2 inhibited and SR 141716A increased Ca2+ currents. Taken together, our results demonstrate that a population of native and cloned CB1 cannabinoid receptors can exist in a tonically active state that can be reversed by SR 141716A, which acts as an inverse agonist.  相似文献   

17.
CB1-type cannabinoid receptors in the brain mediate effects of the drug cannabis. Anandamide and sn-2 arachidonylglycerol (2-AG) are putative endogenous ligands for CB1 receptors, but it is not known which cells in the brain produce these molecules. Recently, an enzyme which catalyses hydrolysis of anandamide and 2-AG, known as fatty acid amide hydrolase (FAAH), was identified in mammals. Here we have analysed the distribution of FAAH in rat brain and compared its cellular localization with CB1-type cannabinoid receptors using immunocytochemistry. High concentrations of FAAH activity were detected in the cerebellum, hippocampus and neocortex, regions of the rat brain which are enriched with cannabinoid receptors. Immunocytochemical analysis of these brain regions revealed a complementary pattern of FAAH and CB1 expression with CB1 immunoreactivity occurring in fibres surrounding FAAH-immunoreactive cell bodies and/or dendrites. In the cerebellum, FAAH was expressed in the cell bodies of Purkinje cells and CB1 was expressed in the axons of granule cells and basket cells, neurons which are presynaptic to Purkinje cells. The close correspondence in the distribution of FAAH and CB1 in rat brain and the complementary pattern of FAAH and CB1 expression at the cellular level provides important new evidence that FAAH may participate in cannabinoid signalling mechanisms of the brain.  相似文献   

18.
In primary cocultures of neurons and glial cells prepared from the neonatal rat brain, lipopolysaccharide (LPS) reduced the numbers of neuronal cells but the effects were markedly inhibited by NG-monomethyl-L-arginine, indicating the involvement of NO and LPS-induced NO synthase in neuronal death. LPS stimulated the expression of inducible NOS (iNOS) in preparations of primary cultured microglias/astrocytes, but not in primary cultured neurons. In addition, LPS caused DNA fragmentation only in NG108-15 cells but not in primary cultured astrocytes as well as astrocytes in cocultures of the two cell types, suggesting that NOS induces the apoptosis of neurons but not glial cells. We then examined the NO-induced neuronal death in NG108-15 cells using NO donors. SNP, and NO donor, caused NO-2 accumulation in the reaction medium and lactate dehydrogenase (LDH) leakage from NG108-15 cells. Although SNP stimulated guanylyl cyclase and accumulated cGMP, cGMP analogs did not affect LDH leakage. In addition, SNP induced chromosomal condensation and fragmentation of nuclei in NG108-15 cells. Gel electrophoretic analysis of cellular DNA extracted from SNP-treated cells, confirmed the internucleosomal DNA fragmentation typical of apoptosis in this culture. SNP increased the amount of radioisotopic labeled glyceraldehyde-3 phosphate dehydrogenase (GAPDH) in the presence of [32P]NAD and inhibited the enzyme activity. The results suggested that SNP-induced cell death is partly due to the NO-induced inhibition of GAPDH, perhaps by stimulating the binding of NAD to GAPDH.  相似文献   

19.
In NG108-15 cells inhibition of both N-type calcium channel current and adenylyl cyclase by somatostatin (SRIF) was not sustained but rapidly desensitized in the continued presence of the drug. The degree and rate of desensitization were concentration-dependent, and the desensitization was homologous with respect to the delta-opioid receptor. We have been unable to obtain evidence for the involvement of G protein-coupled receptor kinases (GRKs) in this desensitization. SRIF-induced desensitization of N-type calcium channel currents was not reduced in cells stably overexpressing a dominant negative mutant of GRK2 or following intracellular dialysis with GRK2- and GRK3-blocking peptides or with heparin. Inhibitors of protein kinase A, protein kinase C, and protein kinase G were also without effect. In contrast, both the rate and degree of SRIF-induced desensitization were reduced by pretreatment with phenylarsine oxide or concanavalin A, both inhibitors of receptor endocytosis. Furthermore, SRIF-induced desensitization was enhanced by monensin, which prevents receptor recycling back to the plasma membrane. Similarly, SRIF-induced desensitization of adenylyl cyclase inhibition was not reduced in cells stably overexpressing dominant negative mutant GRK2 but was reduced in cells pretreated with the receptor endocytosis inhibitor hyperosmotic sucrose or concanavalin A. These data are consistent with the view that SRIF-induced desensitization in NG108-15 cells results from receptor internalization.  相似文献   

20.
The binding of a classical cannabinoid agonist, [3H]R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol[1,2 ,3-de]-1,4-benzoxazin-6-yl)(1-napthalenyl)methanone monomethanesulfonate ([3H] WIN55212-2), and a selective cannabinoid receptor (CB1) antagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)1-(2,4-dichlorophenyl)-4-meth yl-1H-pyrazole-3-carboxamide hydrochloride ([3H]SR141716A), to rat cannabinoid receptors was evaluated using rat cerebellar membranes. Guanine nucleotides inhibited [3H]WIN55212-2 binding by approximately 50% at 10 microM and enhanced [3H]SR141716A binding very slightly. In the same tissue, the binding of guanosine 5'-O-[gamma-[35S]thio]triphosphate ([35S]GTP-gamma-S) was characterized and the influence of cannabinomimetics evaluated on this binding. Cannabinoid receptor agonists enhanced [35S]GTP-gamma-S binding, whereas SR141716A was devoid of action by itself but antagonized the action of cannabinoid receptor agonists. The good correlation obtained between the half maximum efficient concentration (EC50) values in [35S]GTP-gamma-S binding and the IC50 values [3H]WIN55212-2 binding shows that [35S]GTP-gamma-S binding could be a good functional assay for brain cannabinoid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号