共查询到20条相似文献,搜索用时 15 毫秒
1.
A periodic thermal model for an evaporative cooling system over the roof has been presented. Open roof pond, water film and flowing water layer are the the special cases of the analysis. The time dependency of solar radiation, ambient air, sol-air and room air temperatures has explicitly been taken into account by expressing as a Fourier series of time for a 24 h cycle. Experimentally observed air temperature of rooms, treated with and without evaporative cooling over the roof, has been found in good agreement with theoretical results. 相似文献
2.
The thermal performance of a building fitted with an evaporative cooling tower has been evaluated in terms of discomfort index for two climates, namely, composite and hot-dry, typified by New Delhi and Jodhpur, respectively. The effects of various evaporative cooling parameters (height and cross-sectional area of the tower, packing factor, area of the pads, resistance offered to the air flow and local wind conditions) on the performance of the building have been analysed. It was found that, for given parameters of the tower and wind conditions, there is an optimum height of the tower for which the thermal discomfort condition in the building is minimum. The optimum values of the tower height for comfort conditions in the building for various other tower parameters have been obtained for each climate. 相似文献
3.
Dependence of the cooling potential of an evaporative cooling tower on the tower parameters (height h, cross-sectional area At, evaporative pad area Ap, packing factor of evaporating pads Fp and flow resistance f) has been investigated. The performance of the tower is studied for two different climates, namely hot-dry and composite, typified by Jodhpur and Delhi. 相似文献
4.
Using the analogy between heat and mass transfer processes, the recently developed entransy theory is extended in this paper to tackle the coupled heat and mass transfer processes so as to analyze and optimize the performance of evaporative cooling systems. We first introduce a few new concepts including the moisture entransy, moisture entransy dissipation, and the thermal resistance in terms of the moisture entransy dissipation. Thereinafter, the moisture entransy is employed to describe the endothermic ability of a moist air. The moisture entransy dissipation on the other hand is used to measure the loss of the endothermic ability, i.e. the irreversibility, in the coupled heat and mass transfer processes – this total loss is shown to consist of three parts: (1) the sensible heat entransy dissipation, (2) the latent heat entransy dissipation, and (3) the entransy dissipation induced by a temperature potential. Finally the new thermal resistance, defined as the moisture entransy dissipation rate divided by the squared refrigerating effect output rate, is recommended as an index to effectively reflect the performance of the evaporative cooling system. In the end, two typical evaporative cooling processes are analyzed to illustrate the applications of the proposed concepts. 相似文献
5.
This study is motivated by the difficulty of cultivating crops in very hot countries and by the tendency for some such countries to become dependent on imported food. Liquid desiccation with solar regeneration is considered as a means of lowering the temperature in evaporatively-cooled greenhouses. Previous studies demonstrated the technical feasibility of the desiccation–evaporation process, but mainly in the context of human dwellings. In the proposed cycle, the air is dried prior to entering the evaporative cooler. This lowers the wet-bulb temperature of the air. The cooling is assisted by using the regenerator to partially shade the greenhouse. The heat of desiccation is transferred and rejected at the outlet of the greenhouse. The cycle is analysed and results given for the climate of the The Gulf, based on weather data from Abu Dhabi. Taking examples of a temperate crop (lettuce), a tropical crop (tomato) and a tropical crop resistant to high temperatures (cucumber) we estimate the extension in growing seasons relative to (i) a greenhouse with simple fan ventilation (ii) a greenhouse with conventional evaporative cooling. Compared to option (ii), the proposed system lowers summers maximum temperatures by 5 °C. This will extend the optimum season for lettuce cultivation from 3 to 6 months of the year and, for tomato and cucumber, from 7 months to the whole year. 相似文献
6.
This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions. 相似文献
7.
After introducing the concepts of moisture entransy, moisture entransy dissipation and thermal resistance based on moisture entransy dissipation (TRMED) in part I of this study, we further analyze several direct/indirect evaporative cooling processes based on the above concepts in this part. The nature of moisture entransy, moisture entransy dissipation and TRMED during evaporative cooling processes was reexamined. The results demonstrate that it is the moisture entransy, not the enthalpy, that represents the endothermic ability of a moist air, and reducing the entransy dissipation by both enlarging the thermal conductance of heat and mass transfer, and decreasing the temperature potential of the moist air, i.e. the difference between the dry-bulb temperature of moist air over its dew-point temperature, will result in a smaller system TRMED, and consequently a better evaporative cooling performance. Then, a minimum thermal resistance law for optimizing evaporative cooling systems is developed. For given mass flow rates of both moist air and water, with prescribed moist air and water conditions, minimizing the TRMED will actually lead to the most efficient evaporative cooling performance. Finally, the thermal conductance allocation for an indirect evaporative cooling system is optimized to illustrate the application of the proposed minimum thermal resistance law. 相似文献
8.
In this paper, exergy method is applied to analyze the gas turbine cycle cogeneration with inlet air cooling and evaporative aftercooling of the compressor discharge. The exergy destruction rate in each component of cogeneration is evaluated in detail. The effects of some main parameters on the exergy destruction and exergy efficiency of the cycle are investigated. The most significant exergy destruction rates in the cycle are in combustion chamber, heat recovery steam generator and regenerative heat exchanger. The overall pressure ratio and turbine inlet temperature have significant effect on exergy destruction in most of the components of cogeneration. The results obtained from the analysis show that inlet air cooling along with evaporative aftercooling has an obvious increase in the energy and exergy efficiency compared to the basic gas turbine cycle cogeneration. It is further shown that the first-law efficiency, power to heat ratio and exergy efficiency of the cogeneration cycle significantly vary with the change in overall pressure ratio and turbine inlet temperature but the change in process heat pressure shows small variation in these parameters. 相似文献
9.
This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission. 相似文献
10.
Hong Kong is a typical subtropical region with frequently high humidity in late spring and summer seasons. Plume from evaporative cooling towers, which service air-conditioning systems of civil buildings, has aroused public concerns since 2000 when the fresh water evaporative cooling towers were allowed to be used for high energy efficiency and environmental issues. This paper presents the evaluation of the plume potential and its effect on the sizing of the plume abatement system in a large commercial office building in Hong Kong for practical application. This evaluation was conducted based on a dynamic simulation platform using the typical meteorological year of Hong Kong since the occurrence of the plume heavily depends on the state conditions of the exhaust air from cooling towers and the ambient air, while the state condition of the exhaust air is determined by the total building cooling load and the control strategies of cooling towers employed mainly for improving energy efficiency. The results show that the control strategies have a significant effect on the plume potential and further affect the system design and sizing of the plume abatement system. 相似文献
11.
In the northern China areas, the traditional heating methods are widely used in solar greenhouse, for example: electric heating, hot air heating, hot water heating, burning-cave heating etc. If copying the assuring building indoor environment of constant heating ways into solar greenhouse, it will further increase building energy consumption, thus improving the efficiency of energy utilization, establishing appropriate growing environment, and realizing the agricultural waste recycling are important ways of consistent with the Chinese conditions, construction of sustainable development, improving the efficiency of the greenhouse production. To solve the problem of traditional heating method for high heating energy consumption, the inharmonious between greenhouse air temperature and soil temperature, uneven soil temperature, the research build the burning cave hot water soil heating system of solar greenhouse experimental platform in accordance with principle of energy cascade utilization. This experiment platform will transfer burning cave internal heat into soil heating system. The soil is evenly heated by system. Through testing the actual operation effect of the burning cave hot water soil heating system of new solar greenhouse, electric heating system, no taking any heating measures system, burning cave hot water soil heating system of solar greenhouse can improve the soil average temperature 5 ∼ 6 °C. This research provides experimental basis for practical applications and promotion. 相似文献
12.
The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25-100 MW, the inlet air cooling using a TES system increased the power output in the range of 3.9-25.7%, increased the efficiency in the range 2.1-5.2%, while increased the payback period from about 4 to 7.7 years. 相似文献
13.
This paper reviews the available worldwide cooling technologies for agricultural greenhouses and discusses the representative applications of each technology. Relevant information about the system characteristics, application and performance of the existing greenhouse cooling technologies such as ventilation (natural and forced), shading/reflection, evaporative cooling (fan-pad, mist/fog and roof cooling) and composite systems (earth-to-air heat exchanger system and aquifer coupled cavity flow heat exchanger system) is collected and presented in detail. As per the collected information, the pros and cons of each technology are also discussed. Finally, some important conclusions are drawn (based on the collected information) regarding the performance of each discussed system. 相似文献
14.
概述了火电厂冷却系统的特点,介绍了蒸发式冷凝器的工作原理,基于朗肯循环详细分析了蒸发式冷凝器用在火电厂冷却系统中所具有的优点,从而提出了在我国运用这项技术的必要性,并通过两个实例说明蒸发式冷凝器用于火电厂的冷却系统是可行的。 相似文献
16.
An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirect evaporative chiller can be set close to the dew point temperature of the chiller’s inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14–20 °C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COPr,s of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water–air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23–27 °C and relative humidity of 50–70%, proved that the developed practical indirect evaporative chiller successfully satisfy the indoor air conditioning load for the demo building. The indirect evaporative chiller has a potentially wide application in dry regions, especially for large scale commercial buildings. Finally, this paper presented the geographic regions suitable for the technology worldwide. 相似文献
17.
减少夜间通过前屋面的散热是日光温室节能的关键。文章对室内前屋面下设置保温幕的试验温室(有幕温室)与相同结构的不设保温幕的对比温室(无幕温室)的温度环境进行了测试比较。测试结果显示:内保温幕的设置有效地抑制了夜间通过前屋面由于温差引起的散热,并提高了晴天夜间室内的温度。 相似文献
18.
The design of an earth to air heat exchanger (EAHE) requires knowledge of its total thermal resistance ( RTot) for heating and cooling applications. In this research, a 47 m long horizontal, 56 cm nominal diameter U-bend buried galvanized was studied experimental EAHE used for the determination and evaluation of thermal properties of heat exchanger. This system was designed and installed in the Solar Energy Institute, Ege University, Izmir, Turkey. Based on the experimental results, generalized relationships were developed for predicting of thermal resistance of the heat exchanger. Average total heat exchanger thermal resistance was estimated to be 0.021 K-m/W as a constant value under steady state condition. 相似文献
19.
This paper presents and studies the novel concept of thermoelectric self cooling, which can be introduced as the cooling and temperature control of a device using thermoelectric technology without electricity consumption.For this study, it is designed a device endowed with an internal heat source. Subsequently, a commonly used cooling system is attached to the device and the thermal performance is statistically assessed. Afterwards, it is developed and studied a thermoelectric self cooling system appropriate for the device.Experimental and analytical results show that the thermal resistance between the heat source and the environment reduced by 25-30% when the thermoelectric self cooling system is installed, and indicates the promising applicability of this technology to devices that generate large amounts of heat, such as electrical power converters, transformers and control systems. Likewise, it was statistically proved that the thermoelectric self cooling system leads to significant reductions in the temperature difference between the heat source and the environment, and, what is more, this reduction increases as the heat flow generated by the heat source increases, which makes evident the fact that thermoelectric self cooling systems work as temperature controllers. 相似文献
20.
Recently, Concentrated Solar Power (CSP) is attracting numerous research attentions, and thermal energy storage (TES) system filled with energy storage media is a critical component in all CSP plants. To realize a high energy storage efficiency ( ) and exergy efficiency ( ), a comprehensive study to the cascade latent heat thermal energy storage (CLHTES) system is necessary from the perspective of heat transfer. In this study, a dimensionless parametric study was presented using an enthalpy-based 1D transient model for energy storage/extraction in CLHTES system. A dimensionless parameter space ( ) was constructed by considering and as the objective functions to explore the effects from dimensionless material properties (such as latent heat, specific heat at solid and liquid phases) and dimensionless operational parameters (such as charging/discharging time period, TES tank height and diameter). It is recommended that when <0.5 and <1.0, the system performance is very sensitive to and , furthermore for the same TES tank volume ( H/D = D/H = 1.0), the sensitivity by varying its diameter alone is double than that from changing its height. The novelty of this study is to provide the design criteria for the CLHTES system, so that it can easily be designed and its efficiencies can be competitive to sensible heat thermal energy storage (SHTES) system. The results from this parametric study and sensitivity analysis are expected to benefit the solar thermal research and industry community to design the CLHTES system. 相似文献
|