首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
偶氮及氧化偶氮呋咱化合物的合成与表征   总被引:3,自引:0,他引:3  
以3,4-二氨基呋咱(DAF)为原料,次氯酸钠为氧化剂合成出3,3′-二氨基-4,4′-偶氮呋咱(DAAF);用相对较强的氧化剂过硫酸氢钾的复合盐(OXONETM)氧化DAF得到3,3′-二氨基-4,4′-氧化偶氮呋咱(DAOAF);以100%硝酸为硝化剂硝化DAAF制得3,3′-二硝氨基-4,4′-偶氮呋咱(DNAAF);DAAF和DAOAF分别经重氮化叠氮取代得到3,3′-二叠氮基-4,4′-偶氮呋咱(DADAF)和3-氨基-3′-叠氮基-4,4′-氧化偶氮呋咱(AAAF);DADAF久置一段时间完全转化成5-[4-叠氮基呋咱基]-5H-[1,2,3]三唑并[4,5-c][1,2,5]呋咱内盐(I)。采用红外、质谱、核磁等分析手段对所合成化合物进行表征。  相似文献   

2.
新型含能材料呋咱类化合物的研究进展   总被引:1,自引:0,他引:1  
介绍了几种呋咱类含能化合物3,4–二氨基呋咱(DAF)、3,3′–二氨基–4,4′–氧化偶氮呋咱(DAAF)、3,3′–二氨基–4,4′–偶氮呋咱(DAAzF)、3,4–二硝基呋咱基氧化呋咱(DNTF)、3–硝基呋咱–4–甲醚(NFME)、(3 E,4 E)–二肟甲基氧化呋咱(DPX1)的合成方法和性能。通过与其他含能材料的性能对比,可知呋咱类化合物是一类性能优良、具有广阔应用前景、可应用于推进剂的含能材料。  相似文献   

3.
用双氧水、钨酸钠及甲磺酸氧化3,4-二氨基呋咱(DAF)合成了3-氨基-4-硝基呋咱;用100%硝酸硝化DAF得到3,4-二硝胺基呋咱;用NaNO_2、H_2SO_4及NaN_3DAF重氮、取代DAF得到3-氨基-4-叠氮基呋咱;用30%的双氧水、钨酸钠及甲磺酸氧化3-氨基-4-叠氮基呋咱,得到3-叠氮基-4-硝基呋咱及3,3′-二叠氮基-4,4′-氧化偶氮呋咱。用TG-DSC研究了这些化合物的热行为。采用B3LYP/6-31G*方法预估了化合物的理论密度、标准生成、爆速、爆压。结果表明,氧化偶氮基的引入增强了呋咱类化合物的热稳定性;叠氮基的引入提高了化合物的生成焓。3-氨基-4-硝基呋咱中氨基转化为叠氮基,生成焓由183.26kJ/mol增至571.40 kJ/mol;硝胺基的引入显著提高了含能化合物的密度、爆速和爆压。  相似文献   

4.
在4种1,3,4-噁二唑联呋咱分子骨架上引入三硝基甲基、氟代偕二硝基、硝基及硝氨基等含能基团,设计了5类共10种含能化合物;采用密度泛函方法B3LPY/6-31G(d, p)基组,研究了化合物的物化性能、爆轰性能(密度、生成焓、氧平衡、爆速、爆压)与安全性能(静电势分布和键解离能)间的构效关系。结果表明,三硝基甲基及氟代偕二硝基可大大改善呋咱衍生物的爆轰性能,而联四芳环的1,3,4-噁二唑联呋咱的共轭母体骨架可有效提高致爆基团中C—NO_2的键离解能,是设计高能不敏感含能化合物的有效方法;其中,3,3′-二(5-三硝基甲基-1,3,4-噁二唑)-4,4′-偶氮呋咱(E-1)密度为1.969g/cm~3,爆速达9130m/s,爆压为38.82GPa,最弱键(C—NO_2)键离解能为131.57kJ/mol,表现出优异的综合性能。  相似文献   

5.
呋咱含能化合物的合成及其衍生物反应研究进展   总被引:2,自引:0,他引:2  
阐述了二肟脱水和氧化呋咱还原2种构建呋咱环的主要方法,以及氨基取代呋咱衍生物、硝基取代呋咱衍生物和氰基取代呋咱衍生物的反应;列举了几种典型的呋咱含能化合物如二硝基呋咱(DNF)、二氨基偶氮呋咱(DAAF)、3,4–双(4′–硝基呋咱–3′–基)氧化呋咱(DNTF)、呋咱醚类化合物(FOF–1,FOF–2,FOF–13)和稠环类呋咱含能化合物(MNOTO、4,5,9,10–四硝基–1,4,5,8–四氮杂氢化萘(2,3,–6,7)并双呋咱)的合成方法及性能。  相似文献   

6.
综述了3-氨基-4-偕氨肟基呋咱(AAOF)的几种典型合成方法;基于AAOF分子结构中氨基、偕氨肟基的反应活性,可合成3,4-双(4′-氨基呋咱-3′-基)氧化呋咱(DATF)、3,4-双(4′-硝基呋咱-3′-基)氧化呋咱(DNTF)、3,4-双(4′-叠氮基呋咱-3′-基)氧化呋咱(DAZTF)、呋咱胺含能化合物、呋咱醚(FOF-2、FOF-13、BFFO、TFO)等典型含能化合物。系统介绍了上述8大系列30种高含能化合物的合成技术途径及主要的物化性能,有望在高能炸药、高能推进剂等领域得到应用。附参考文献56篇。  相似文献   

7.
利用C500量热仪研究了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐(HNAF)的热分解特性,根据Kissinger和Ozawa方程计算了热分解的动力学参数,同时计算了热分解的热力学参数;采用Micro-DSCⅢ量热仪测定了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐的比热容,计算获得了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐热安全评价参数。结果表明,HNAF的活化能(E)和指前因子(A)分别为205.26 kJ/mol和1020.32 s-1;活化熵、活化焓和活化吉布斯自由能分别为140.76 J/(mol·K)、201.56 kJ/mol和200.39 kJ/mol。比热容方程与298.15 K时的摩尔比热容分别为C p=-1.560+0.016 T-2.263×10-5 T 2(J/(g·K))和446.028 J/(mol·K)。自加速分解温度、绝热分解温升、热爆炸临界温度分别为444.44 K、2382.89 K、452.86 K,绝热至爆时间为12.46~12.54 s。  相似文献   

8.
利用C500量热仪研究了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐(HNAF)的热分解特性,根据Kissinger和Ozawa方程计算了热分解的动力学参数,同时计算了热分解的热力学参数;采用Micro-DSCⅢ量热仪测定了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐的比热容,计算获得了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐热安全评价参数。结果表明,HNAF的活化能(E)和指前因子(A)分别为205.26kJ/mol和1020.32s~(-1);活化熵、活化焓和活化吉布斯自由能分别为140.76J/(mol·K)、201.56kJ/mol和200.39kJ/mol。比热容方程与298.15K时的摩尔比热容分别为C_p=-1.560+0.016T-2.263×10~(-5)T~2(J/(g·K))和446.028J/(mol·K)。自加速分解温度、绝热分解温升、热爆炸临界温度分别为444.44K、2382.89K、 452.86K,绝热至爆时间为12.46~12.54s。  相似文献   

9.
以3-氰基-4-氨基氧化呋咱为原料,经催化环化、氧化偶联反应合成了3,3′-二(四唑-5-基)-4,4′-偶氮氧化呋咱;利用红外光谱、核磁共振及元素分析对产物进行了结构表征;采用差示扫描量热法(DSC)研究了其热分解过程;采用密度泛函理论方法,在B3LYP/6-31+G(d,p)水平上优化了其分子构型,计算了其键级并预估了其理论密度(ρ)、标准生成焓(Δ_fH(s))、爆速(D)和爆压(p)。结果表明,3,3′-二(四唑-5-基)-4,4′-偶氮氧化呋咱的分解峰温为195.6℃,ρ、Δ_fH(s)、D和p值分别为1.76g/cm~3、1 156.4kJ/mol、8 013m/s和28.6GPa;氧化呋咱环中配位氧侧的氮氧单键键长和键级分别为0.145nm和0.89,为分子中不稳定位点。  相似文献   

10.
以三羟甲基硝基甲烷(TN)和丙酮为原料,通过缩合、碱催化、亚硝化反应合成了2,2-二甲基-5-硝基-5-亚硝基-1,3-二氧杂环己烷(DMNNDO),然后以DMNNDO与二氨基氧化偶氮呋咱(DAOAF)为原料,经氧化偶联反应合成了含能中间体3,3′-双(2,2-二甲基-5-硝基-1,3-二氧杂环己烷-5-ONN-氧化偶氮基)氧化偶氮呋咱(BDDAF),4步反应总收率为40%;采用IR、1 H NMR、13 C NMR、15 N NMR和元素分析对目标化合物进行了结构表征;培养并获得了BDDAF的单晶,利用X-射线单晶衍射仪对其结构进行了表征;利用差示扫描量热(DSC)法和热重分析(TG)法研究了BDDAF的热行为。结果表明,BDDAF为单斜晶系,空间群为P2(1)/n,晶胞参数为a=0.545 04(15)nm,b=3.146 2(9),c=0.754 6(2),β=103.612(5)°,V=1.257 7(6)nm3,Z=2,Dc=1.554g/cm3,F(000)=608,wR1=0.138 7,wR2=0.330 6;优化了氧化偶联反应条件,收率达到85%;改进了氧化偶联的后处理方法,采用溶剂-非溶剂法代替柱层析分离法,产品纯度大于99%;BDDAF的熔点为117℃,热分解温度为248℃。  相似文献   

11.
3,3’-二硝基-4,4’-偶氮氧化呋咱的合成及性能   总被引:1,自引:0,他引:1  
以丙二酸单酰肼单钾盐为原材料,经硝化和哑硝化反应“一锅法”合成了4-氨基-3-叠氮羰基氧化呋咱(AN-FO),然后通过ANFO合成出3,3 ’-二氨基-4,4’-偶氮氧化呋咱(DAAFO),DAAFO在双氧水/浓硫酸溶液中氧化为DNAFO.用元素分析、IR、MS和DSC-TG对其结构进行了表征.结果表明,丙二酸单肼单钾...  相似文献   

12.
1994年7月,德国颁布法令,自1995年起,禁止用联苯胺、4-氨基联苯、4-氯-2-甲基苯胺、2-萘胺、4-氨基-3、2′-二甲基偶氮苯、2-氨基-4-硝基甲苯、对氯苯胺、2,4-二氨基苯甲醚、4,4′-二_氨基二苯甲烷、3,3′-双氯联苯胺、3,3′-二甲氧基联苯胺、3,3′-二甲基联苯胺、3,3′-二甲基-4,4′-二氨基二苯甲烷、3-甲基-6-甲氧基苯胺、4,4′-二氨基-3,3′-二氯二苯甲烷、4,4′-二氨基二苯醚、4,4′-  相似文献   

13.
以对羟基苯甲酸、3-溴丙烯、3,3′,5,5′-四甲基联苯二酚等为原料,通过间氯代过氧化苯甲酸氧化法合成4,4′-双(4-羟基苯甲氧基)3,3′,5,5′-四甲基联苯二缩水甘油醚,化合物结构用FT-IR和~1HNMR进行了表征。并对氢氧化钠用量,缚酸剂,氧化反应温度和时间的选择进行了讨论。  相似文献   

14.
黄海平  梅光泉  吴琼 《化学试剂》2007,29(7):394-396
通过3,3′,5,5′-四甲基-4,4′-联吡唑(Me4diPz)和4,4′-二甲基-2,2′-联吡啶硝酸钯(dmbpyPd(NO3)2)在水溶液中的自发去质子自组装反应,合成了一种含双金属中心的双吡唑双齿桥联的八核金属大环,采用核磁共振谱、电喷雾质谱、元素分析和分子结构模拟(CAChe 6.1.12)对该化合物进行结构表征。  相似文献   

15.
以4-甲氧基苯腈为原料,经肟化、重氮化、脱氮、关环、硝化及胺化等六步反应合成3,4-二(4′-氨基-3′,5′-二硝基苯基)氧化呋咱(DANBF),并优化了肟化、氧化呋咱成环及硝化反应的条件,用DSC、TG等对目标化合物的热性能进行了表征。结果表明,氧化呋咱成环反应的最适宜条件为:Na2CO3摩尔量为理论摩尔量的1.35倍,反应温度2~10℃,反应时间5h,收率58.1%,纯度不小于99.0%(HPLC)。芳基取代的氧化呋咱化合物具有较好的热稳定性。  相似文献   

16.
4,4'-二硝基双呋咱醚的合成与表征   总被引:1,自引:0,他引:1  
以3,4-二氨基呋咱(DAF)为原料,经Caro-acid氧化生成二硝基呋咱(DNF),碱性条件下DNF分子间硝基醚化后合成目标化合物4,4′-二硝基双呋咱醚(FOF-1).采用红外光谱、质谱、元素分析及核磁共振进行了结构表征;初步探讨了硝基分子间醚化合成FOF-1的反应机理;优化了氧化、分子间醚化工艺,确定了最佳合成条件:氧化反应时间为3.5 h, H2SO4的起始浓度为51.7%,醚化反应时间为2.5 h,水质量分数小于0.03%.总收率达到42%,纯度为99.6%.  相似文献   

17.
以对甲基苯酚、4,4′-二氯二苯砜为原料,通过亲核取代反应合成了4,4′-二(4-甲基苯氧基)二苯砜,用高锰酸钾将甲基氧化得到4,4′-(4,4′-砜基二苯氧基)二苯甲酸(SODBA),后者在二氯亚砜和路易斯碱的催化下合成了4,4′-(4,4′-砜基二苯氧基)二苯甲酰氯(SODBC)白色固体.用FT-IR、1H-NMR、13C-NMR、DSC等对其进行了表征,实验证明该化合物具有预期的结构和较高的纯度.  相似文献   

18.
1994年7月15日德国政府颁布“禁止生产和使用那些偶氮键在特殊条件下能分解产生20种对人体有害芳香胺的偶氮染料”法令。这类有害芳香胺包括联苯胺、4-氨基联苯、2-甲基-4氯苯胺、2-蔡胺、4-氨基-3,2’-二甲基偶氮苯、2-氮基-4-硝基甲苯、对氯苯胺、2,4-二氮基革甲醚、4,4’-二氨基二苯甲烷、3,3’-二氯联苯胺、3,3’-二甲氧基联苯胺、3,3’-二甲基联苯胺、3,3’-二甲基-4,4’-二氨基二苯甲烷、2-甲氧基-5-甲基苯胺、3.3’-二氯4,4’-二氮基二苯甲烷、4,4’-二  相似文献   

19.
呋咱类化合物因能量密度高、综合性能好、可作为炸药和推进剂等广泛应用于军事领域.3,4-二氨基呋咱(DAF)作为重要的前体化合物,其大规模合成为呋咱类高能量密度衍生物的应用奠定了基础.本文首先介绍了DAF的合成工艺及其氧化机理,并综述了以其为中间体得到的氧化物、大环、长链和稠环化合物的国内外合成方法及性能,表明呋咱类化合物爆轰性能优良,具有潜在应用前景;但是,不少硝基取代或多呋咱环衍生物存在安定性差、感度高的缺点.据此,提出设计合成新型钝感高能呋咱衍生物是解决上述不足的有效方法;DAF的合成工艺研究及增大呋咱类化合物开发力度是未来的发展重点.  相似文献   

20.
一、引言3,3′,4,4′-四甲基二苯甲酮■英文简称3,3′,4,4′TMB]是制备耐高温材料聚酰亚胺—3,3′,4,4′-二苯甲酮四羧酸二酐的重要原料之一。在3,3′,4,4′TMB 的合成过程中,需要建立一个快速、准确的色谱分析方法,以满足其氧化产率的分析,控制其合成条件,鉴定产品纯度。3,3′,4,4′TMB 是由邻二甲苯经傅列德尔-克拉夫茨酰基化反应合成的。在其合成产物中,同时含有2,3,3′,4-四甲基二苯甲酮[简称2,3,3′,4TMB]和3,3′,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号