共查询到20条相似文献,搜索用时 62 毫秒
1.
The bag cell neurons of Aplysia are a cluster of cells that control egg laying behavior. After brief synaptic stimulation, they depolarize and fire spontaneously for up to 30 min. During the first few seconds of this afterdischarge, the action potentials of the bag cell neurons undergo pronounced broadening. Single bag cell neurons in culture also show spike broadening in response to repeated depolarizations. This broadening is frequency-dependent and associated with the induction of a depolarizing afterpotential lasting minutes. In some neurons the depolarizing afterpotential is sufficient to trigger spontaneous firing. To test the possibility that spike broadening during stimulation is required to trigger the depolarizing afterpotential, we eliminated frequency-dependent broadening by heterologous expression of the Kv3.1 potassium channel. This channel has rapid activation and deactivation kinetics and no use-dependent inactivation. Expression of Kv3.1 prevented spike broadening and also eliminated the depolarizing afterpotential. Measurements of the integral of calcium current during voltage commands, which simulated the action potentials of the control neurons and those expressing Kv3.1, indicate that spike broadening produces up to a fivefold increase in calcium entry. Manipulations that limit calcium entry during action potentials or chelation of intracellular calcium using BAPTA AM prevented the induction of the depolarizing afterpotential. We conclude that spike broadening is essential for the induction of the depolarizing afterpotential probably by regulating calcium influx and suggest that one of the physiological roles of spike broadening may be to regulate long-term changes in neuronal excitability. 相似文献
2.
C Sekirnjak ME Martone M Weiser T Deerinck E Bueno B Rudy M Ellisman 《Canadian Metallurgical Quarterly》1997,766(1-2):173-187
Voltage-gated potassium channels constitute the largest group of heteromeric ion channels discovered to date. Over 20 genes have been isolated, encoding different channel subunit proteins which form functional tetrameric K+ channels. We have analyzed the subcellular localization of subunit Kv3.1b, a member of the Kv3 (Shaw-like) subfamily, in rat brain at the light and electron microscopic level, using immunocytochemical detection. Detailed localization was carried out in specific neurons of the neocortex, hippocampus and cerebellum. The identity of Kv3.1b-positive neurons was established using double labeling with markers for specific neuronal populations. In the neocortex, the Kv3.1b subunit was expressed in most parvalbumin-containing bipolar, basket or chandelier cells, and in some bipolar or double bouquet neurons containing calbindin. In the hippocampus, Kv3.1b was expressed in many parvalbumin-containing basket cells, as well as in calbindin-positive neurons in the stratum oriens, and in a small number of interneurons that did not stain for either parvalbumin or calbindin. Kv3.1b protein was not present in pyramidal cells in the neocortex and the hippocampus, but these cells were outlined by labeled presynaptic terminals from interneuron axons that surround the postsynaptic cell. In the cerebellar cortex, granule cells were the only population expressing the channel protein. Careful examination of individual granule cells revealed a non-uniform distribution of Kv3.1 staining on the somata: circular bands of labeling were present in the vicinity of the axon hillock. In cortical and hippocampal interneurons, as well as in cerebellar granule cells, the Kv3.1b subunit was present in somatic and unmyelinated axonal membranes and adjacent cytoplasm, as well as in the most proximal portion of dendritic processes, but not throughout most of the dendrite. Labeling was also seen in the terminals of labeled axons, but not at a higher concentration than in other parts of the axon. The distribution in the cells analyzed supports a role in action potential transmission by regulating action potential duration. 相似文献
3.
The responses of 35 inferior colliculus multiple units (MUs) to tone onset were measured in 10 freely moving rats before and after differential behavioral conditioning. MU response changes were found in the 16.8 msec after tone onset (includes 2 msec air travel time) after learning. Responses to CS+ onset increased in 12 of the 35 individual MUs, and in the group of MUs as a whole, after conditioning. The CS+--CS- difference increased in 17 of the 35 individual MUs, and in the group of MUs, after conditioning. The response differentiation was significant in the 3.6-6.4 msec interval after the tone reached the animal's ears, the time at which neuronal responses were first evident. Since the inferior colliculus increases were differentiated between CS+ and CS-, they could not be explained by sensitization caused by changed middle ear contractions or by alterations in orientation to the speakers. 相似文献
4.
Kv1.3, a voltage-dependent potassium channel cloned from mammalian brain and T lymphocytes, contains multiple tyrosine residues that are putative targets for tyrosine kinases. We have examined the tyrosine phosphorylation of Kv1.3, expressed transiently in human embryonic kidney (or HEK) 293 cells, by endogenous and coexpressed tyrosine kinases. Tyrosine phosphorylation is measured by a strategy of immunoprecipitation followed by. Western blot analysis, using antibodies that specifically recognize Kv1.3 and phosphotyrosine. Coexpression of the constitutively active tyrosine kinase v-src, together with Kv1.3, causes a large increase in the tyrosine phosphorylation of the channel protein. This phosphorylation of Kv1.3 can be reversed by treatment with alkaline phosphatase before Western blot analysis. Coexpression with a receptor tyrosine kinase, the human epidermal growth factor receptor, also causes an increase in tyrosine phosphorylation of Kv1.3. The effects of endogenous tyrosine kinases were examined by treating Kv1.3-transfected cells with the specific membrane-permeant tyrosine phosphatase inhibitor pervanadate. Pervanadate treatment causes a time- and concentration-dependent increase in the tyrosine phosphorylation of Kv1.3. This increased tyrosine phosphorylation of Kv1.3 is accompanied by a time-dependent decrease in Kv1.3 current, measured by patch-clamp analysis with cell-attached membrane patches. The pervanadate-induced suppression of current and much of the channel tyrosine phosphorylation are eliminated by mutation of a specific tyrosine residue, at position 449 of Kv1.3, to phenylalanine. Thus, there is a continual phosphorylation and dephosphorylation of Kv1.3 by endogenous kinases and phosphatases, and perturbation of this constitutive phosphorylation/dephosphorylation cycle can profoundly influence channel activity. 相似文献
5.
With the objective of defining the relationship of descending inferior colliculus projections to the olivocochlear system in the guinea pig, inferior colliculus neurons were anterogradely labeled with Phaseolus vulgaris-leucoagglutinin and olivocochlear neurons were retrogradely labeled with horseradish peroxidase in the same brain sections. Inferior colliculus neurons were found to project to many nuclei and regions of the hindbrain where olivocochlear neurons reside. The most substantial of these descending projections was to the ipsilateral medioventral periolivary region. Fewer descending projections terminated in the ipsilateral ventral nucleus of the lateral lemniscus, superior paraolivary nucleus, and rostral periolivary region; and even fewer ipsilateral projections terminated in the area surrounding the lateral superior olive, caudal periolivary region, and the lateroventral periolivary region. Descending neurons of the inferior colliculus also project to the contralateral hindbrain first via the lateral lemniscus and then the trapezoid body, to terminate in the contralateral medioventral periolivary region, superior paraolivary nucleus, rostral periolivary region, and the ventral nucleus of the lateral lemniscus. In addition to the projections into these regions that contain olivocochlear neurons, there are varicosities of inferior colliculus neurons that appear to contact the olivocochlear neurons themselves, both ipsilaterally and contralaterally, especially, but not only, in the ipsilateral medioventral periolivary region. We therefore conclude that descending inferior colliculus neurons do provide input to olivocochlear neurons and that the input is not limited to olivocochlear neurons of the ipsilateral medioventral periolivary region. However, given the robust nature of the projection to the ipsilateral medioventral periolivary region and the paucity of contacts observed in that region, we also conclude that the olivocochlear neuron is not the major target of descending inferior colliculus projections. 相似文献
6.
The tissue distributions and physiological properties of a variety of cloned voltage-gated potassium channel genes have been characterized extensively, yet relatively little is known about the mechanisms controlling expression of these genes. Here, we report studies on the regulation of Kv1.1 expressed endogenously in the C6 glioma cell line. We demonstrate that elevation of intracellular cAMP leads to the accelerated degradation of Kv1.1 RNA. The cAMP-induced decrease in Kv1.1 RNA is followed by a decrease in Kv1. 1 protein and a decrease in the whole cell sustained K+ current amplitude. Dendrotoxin-I, a relatively specific blocker of Kv1.1, blocks 96% of the sustained K+ current in glioma cells, causing a shift in the resting membrane potential from -40 mV to -7 mV. These data suggest that expression of Kv1.1 contributes to setting the resting membrane potential in undifferentiated glioma cells. We therefore suggest that receptor-mediated elevation of cAMP reduces outward K+ current density by acting at the translational level to destabilize Kv1.1 RNA, an additional mechanism for regulating potassium channel gene expression. 相似文献
7.
R Peddicord 《Canadian Metallurgical Quarterly》1998,123(1-2):111-124
The barn owl (Tyto alba) uses interaural level difference (ILD) as a cue for the localization of sound. The first site of binaural convergence in the pathway that processes ILD is the ventral lateral lemniscus pars posterior (VLVp). Neurons in VLVp receive excitatory input from the contralateral nucleus angularis, and inhibitory input from the contralateral VLVp. Within the lateral shell of the inferior colliculus are ILD sensitive neurons that show maximum spike rate at a specific ILD value, with response falling off sharply on each side. Adolphs has developed a model of such lateral shell neurons based on anatomic and physiological data. In his model, lateral shell neurons receive inhibitory input from VLVp on both sides, and this inhibition, applied against a constant excitatory input, produces the observed two-sided response curves. We simulated, in Matlab 4, Adolphs' model, and obtained supporting results. Our simulation suggests that VLVp provides a repository of simple ILD filters from which higher centers construct more complex filters, including the single-peaked curves observed by Adolphs. The VLVp filters are organized along the inhibitory gradient, with broad filters ventral, sharp filters dorsal. 相似文献
8.
The voltage-dependent potassium channel, Kv1.3, is modulated by the epidermal growth factor receptor (EGFr) and the insulin receptor tyrosine kinases. When the EGFr and Kv1.3 are coexpressed in HEK 293 cells, acute treatment of the cells with EGF during a patch recording can suppress the Kv1.3 current within tens of minutes. This effect appears to be due to tyrosine phosphorylation of the channel, as it is blocked by treatment with the tyrosine kinase inhibitor erbstatin, or by mutation of the tyrosine at channel amino acid position 479 to phenylalanine. Previous work has shown that there is a large increase in the tyrosine phosphorylation of Kv1.3 when it is coexpressed with the EGFr. Pretreatment of EGFr and Kv1.3 cotransfected cells with EGF before patch recording also results in a decrease in peak Kv1.3 current. Furthermore, pretreatment of cotransfected cells with an antibody to the EGFr ligand binding domain (alpha-EGFr), which blocks receptor dimerization and tyrosine kinase activation, blocks the EGFr-mediated suppression of Kv1.3 current. Insulin treatment during patch recording also causes an inhibition of Kv1.3 current after tens of minutes, while pretreatment for 18 h produces almost total suppression of current. In addition to depressing peak Kv1.3 current, EGF treatment produces a speeding of C-type inactivation, while pretreatment with the alpha-EGFr slows C-type inactivation. In contrast, insulin does not influence C-type inactivation kinetics. Mutational analysis indicates that the EGF-induced modulation of the inactivation rate occurs by a mechanism different from that of the EGF-induced decrease in peak current. Thus, receptor tyrosine kinases differentially modulate the current magnitude and kinetics of a voltage-dependent potassium channel. 相似文献
9.
Kv1.1, a Shaker-like voltage-gated potassium channel, is strongly expressed in a variety of neurons in adult rodents, in which it appears to be involved in regulating neuronal excitability. Here we show that Kv1.1 is also expressed during embryonic development in the mouse, exhibiting two transient peaks of expression around embryonic day 9.5 (E9.5) and E14.5. Using both in situ hybridization and immunocytochemistry, we have identified several cell types and tissues that express Kv1.1 RNA and protein. At E9.5, Kv1.1 RNA and protein are detected transiently in non-neuronal cells in several regions of the early CNS, including rhombomeres 3 and 5 and ventricular zones in the mesencephalon and diencephalon. At E14.5, several cell types in both the CNS and peripheral nervous system express Kv1.1, including neuronal cells (sensory ganglia and outer aspect of cerebral hemispheres) and glial cells (radial glia, satellite cells, and Schwann cell precursors). These data show that Kv1.1 is expressed transiently in a variety of neuronal and non-neuronal cells during restricted periods of embryonic development. Although the functional roles of Kv1.1 in development are not understood, the cell-specific localization and timing of expression suggest this channel may play a role in several developmental processes, including proliferation, migration, or cell-cell adhesion. 相似文献
10.
GD Chen 《Canadian Metallurgical Quarterly》1998,122(1-2):142-150
The effects of the stimulus duration (10 to 300 ms) on the responses of chinchilla inferior colliculus neurons to pure tones were studied in 41 units. The responses of the majority of the neurons (90%) were classified as sustained, onset, pause with onset peak and pause without onset peak response patterns. Three neurons were found to have response to the stimulus offset (offset response pattern). One neuron responded to the sound with the decrease of the spontaneous discharge rate (inhibitory response pattern). The responses restricted within the stimulus duration could be simply predicted from the peristimulus time histogram (PSTH) to the longer duration. The leading part of the PSTH to the longer stimulus duration resembled that to the shorter stimulus duration. The function of the spike number versus duration was correlated with the PSTH patterns. The response following the stimulus offset (including inhibitory response) could vary with the stimulus duration nonmonotonically and show a band-pass or band-reject property. Overall, four (about 10%) of the neurons could be regarded as duration-tuned units. The duration selectivity could be understood by the interaction between the ongoing and the offset process of the neurons. 相似文献
11.
LY Wang L Gan TM Perney I Schwartz LK Kaczmarek 《Canadian Metallurgical Quarterly》1998,95(4):1882-1887
Spines are specialized neuronal membrane structures, often localized at sites where synaptic information is relayed from one cell to another in the central nervous system. By electron immunomicroscopy we have found that the mammalian Shaw family potassium channel Kv3.1 is localized on spine-like protrusions, adjacent to postsynaptic membranes of bushy cells in the cochlear nucleus. As direct characterization of the electrophysiological behavior of ion channels in such structures is difficult, we have used Kv3. 1-transfected CHO cells to create artificial spine-like membrane compartments. Membrane patches were sucked into microelectrodes to form small, cell-attached vesicles with dimensions comparable to those of the neuronal structures. Currents mediated by the Kv3.1 channel in these vesicles undergo rapid and complete inactivation, in contrast to their noninactivating behavior in whole-cell recordings. This apparent inactivation is caused by the rapid depletion of K+ from the vesicle and the slow refilling of K+ into the vesicle compartment from the bulk cytoplasm. Our data provide evidence that compartmentalized ionic transients can be generated in spine-like membrane structures and support the view that the localization of ion channels in spine-like structures may influence responses to synaptic stimulation. 相似文献
12.
GC Koo JT Blake A Talento M Nguyen S Lin A Sirotina K Shah K Mulvany D Hora P Cunningham DL Wunderler OB McManus R Slaughter R Bugianesi J Felix M Garcia J Williamson G Kaczorowski NH Sigal MS Springer W Feeney 《Canadian Metallurgical Quarterly》1997,158(11):5120-5128
The voltage activated K+ channel (Kv1.3) has recently been identified as the molecule that sets the resting membrane potential of peripheral human T lymphoid cells. In vitro studies indicate that blockage of Kv1.3 inhibits T cell activation, suggesting that Kv1.3 may be a target for immunosuppression. However, despite the in vitro evidence, there has been no in vivo demonstration that blockade of Kv1.3 will attenuate an immune response. The difficulty is due to species differences, as the channel does not set the membrane potential in rodent peripheral T cells. In this study, we show that the channel is present on peripheral T cells of miniswine. Using the peptidyl Kv1.3 inhibitor, margatoxin, we demonstrate that Kv1.3 also regulates the resting membrane potential, and that blockade of Kv1.3 inhibits, in vivo, both a delayed-type hypersensitivity reaction and an Ab response to an allogeneic challenge. In addition, prolonged Kv1.3 blockade causes reduced thymic cellularity and inhibits the thymic development of T cell subsets. These results provide in vivo evidence that Kv1.3 is a novel target for immunomodulation. 相似文献
13.
Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors. 相似文献
14.
This research focused on the response of neurons in the inferior colliculus of the unanesthetized mustached bat, Pteronotus parnelli, to apparent auditory motion. We produced the apparent motion stimulus by broadcasting pure-tone bursts sequentially from an array of loudspeakers along horizontal, vertical, or oblique trajectories in the frontal hemifield. Motion direction had an effect on the response of 65% of the units sampled. In these cells, motion in opposite directions produced shifts in receptive field locations, differences in response magnitude, or a combination of the two effects. Receptive fields typically were shifted opposite the direction of motion (i.e., units showed a greater response to moving sounds entering the receptive field than exiting) and shifts were obtained to horizontal, vertical, and oblique motion orientations. Response latency also shifted as a function of motion direction, and stimulus locations eliciting greater spike counts also exhibited the shortest neural latency. Motion crossing the receptive field boundaries appeared to be both necessary and sufficient to produce receptive field shifts. Decreasing the silent interval between successive stimuli in the apparent motion sequence increased both the probability of obtaining a directional effect and the magnitude of receptive field shifts. We suggest that the observed directional effects might be explained by "spatial masking," where the response of auditory neurons after stimulation from particularly effective locations in space would be diminished. The shift in auditory receptive fields would be expected to shift the perceived location of a moving sound and may explain shifts in localization of moving sources observed in psychophysical studies. Shifts in perceived target location caused by auditory motion might be exploited by auditory predators such as Pteronotus in a predictive tracking strategy to capture moving insect prey. 相似文献
15.
A total of 40 neurons from of the central nucleus of the mouse inferior colliculus (IC) were recorded intracellularly from brain slices to determine input properties by electrical stimulation of the ipsilateral lateral lemniscus (LL), commissure of Probst (CP), and commissure of the IC (CoIC) together with cellular morphology (in 25 neurons) by biocytin injection and staining. Nine neurons had oriented (bipolar), 16 neurons non-oriented (multipolar) dendritic trees of various sizes. Axon collaterals of a given neuron often ran in several directions to provide multiple input to adjacent isofrequency laminae, the lateral nucleus of the IC, the brachium of the IC, the LL, the CP, and the IC commissure. Neurons were classified by spike response patterns to depolarizing current injection into onset- and sustained-spiking cells. The former had significantly shorter membrane-time constants, significantly less frequently and smaller hyperpolarizations after spike occurrence, and more Ca2+-humps. These properties and their preferred position in the dorsolateral ICC suggest a participation in binaural temporal processing. Almost all oriented cells showed only excitatory post-synaptic potentials (EPSPs) after LL stimulation, while in non-oriented cells inhibitory post-synaptic potentials (IPSPs) after the EPSPs were significantly more frequent. Neurons with largest dendritic trees and many dorsalward projecting axon collaterals were found in the ventral IC. There, neurons had average 4 ms (two synapses) shorter response latencies to LL stimulation than dorsally located neurons. Thus, neurons in the central and dorsal IC may receive mono- and disynaptic input from ventrally located neurons. 相似文献
16.
1. We have shown previously that under free-field stimulation in the frontal field, frequency selectivity of the majority of inferior colliculus (IC) neurons became sharper when the loudspeaker was shifted to ipsilateral azimuths. These results indicated that binaural inhibition may be responsible for the direction-dependent sharpening of frequency selectivity. To test the above hypothesis directly, we investigated the frequency selectivity of IC neurons under several conditions: monaural stimulation using a semiclosed acoustical stimulation system, binaural stimulation dichotically also using a semiclosed system, free-field stimulation from different azimuths, and free-field stimulation when the ipsilateral ear was occluded monaurally (coated with a thick layer of petroleum jelly, which effectively attenuated acoustic input to this ear). 2. The binaural interaction pattern of 98 IC neurons of northern leopard frogs (Rana pipiens pipiens) were evaluated; of these neurons, there were 34 EE and 64 EO neurons. The majority of IC neurons (92 of 98) showed some degree of binaural inhibition (i.e., showing diminished response when the ipsilateral and contralateral ears were stimulated simultaneously) whether they were designated as EE or EO; these IC neurons thus were classified as EE-I or EO-I. Neurons were classified as exhibiting strong inhibition if the ILD function showed a pronounced response decrement, i.e., a decrease of > or = 50% of the response to monaural stimulation of the contralateral ear. Those neurons that showed smaller response decrements (decrease was > or = 25% but < 50%) were designated as showing weak inhibition. Most of these EE-I and EO-I neurons (n = 68) showed strong binaural inhibition. 3. In agreement with results from our earlier studies, frequency threshold curves (FTCs) of IC neurons were altered by sound azimuth. Independent of binaural interaction pattern, most IC neurons (59 of 98) showed a narrowing of the FTC as sound direction was changed from contralateral 90 deg (c90 degrees) to ipsilateral 90 deg (i90 degrees). IC neurons that exhibited the largest direction-dependent changes in frequency selectivity were typically those that displayed stronger binaural inhibition. Occlusion of the ipsilateral ear, which reduced the strength of binaural inhibition by this ear, abolished direction-dependent frequency selectivity. 4. FTCs of IC neurons that exhibited little to moderate direction-dependent effects on frequency selectivity were associated typically with neurons that displayed weak binaural inhibition. Associated with this weak binaural inhibition, central neural responses under monaural occlusion also displayed only small effects; the FTCs were only slightly broader than those derived in the intact condition, and as before, the experimental manipulation resulted in abolishment of direction-dependent frequency selectivity. 5. In contrast to most IC neurons, which showed direction-dependent narrowing of the FTC, about one-third (34 of 98) of IC neurons studied showed a broadening of the FTC when sound direction was shifted to ipsilateral azimuths. Interestingly, for 90% of these 34 neurons, monaural occlusion resulted in narrowing of the bandwidth at each azimuth instead of broadening of the FTC bandwidth. We have evidence to suggest that this direction-dependent broadening is actually a consequence of a truncation or loss of the tip of the FTC derived at c90 degrees, which results from strong binaural inhibition. 6. To compare the frequency threshold tuning in response to monaural stimulation of each ear with free-field FTCs, we measured FTCs for each of the 34 EE neurons to independent contralateral and ipsilateral stimulation. FTCs derived from ipsilateral monaural stimulation were significantly narrower than those resulting from contralateral monaural stimulation, independent of a neuron's direction-dependent changes in frequency selectivity. 相似文献
17.
M Tanaka TR Cummins K Ishikawa SD Dib-Hajj JA Black SG Waxman 《Canadian Metallurgical Quarterly》1998,9(6):967-972
In contrast to conventional T cells, natural killer (NK) 1.1+ T cell receptor (TCR)-alpha/beta+ (NK1+T) cells, NK cells, and intestinal intraepithelial lymphocytes (IELs) bearing CD8-alpha/alpha chains constitutively express the interleukin (IL)-2 receptor (R)beta/15Rbeta chain. Recent studies have indicated that IL-2Rbeta/15Rbeta chain is required for the development of these lymphocyte subsets, outlining the importance of IL-15. In this study, we investigated the development of these lymphocyte subsets in interferon regulatory factor 1-deficient (IRF-1-/-) mice. Surprisingly, all of these lymphocyte subsets were severely reduced in IRF-1-/- mice. Within CD8-alpha/alpha+ intestinal IEL subset, TCR-gamma/delta+ cells and TCR-alpha/beta+ cells were equally affected by IRF gene disruption. In contrast to intestinal TCR-gamma/delta+ cells, thymic TCR-gamma/delta+ cells developed normally in IRF-1-/- mice. Northern blot analysis further revealed that the induction of IL-15 messenger RNA was impaired in IRF-1-/- bone marrow cells, and the recovery of these lymphocyte subsets was observed when IRF-1-/- cells were cultured with IL-15 in vitro. These data indicate that IRF-1 regulates IL-15 gene expression, which may control the development of NK1+T cells, NK cells, and CD8-alpha/alpha+ IELs. 相似文献
18.
L Alibardi 《Canadian Metallurgical Quarterly》1998,180(5):415-426
Medium to large-giant multipolar neurons in the rat ventral cochlear nucleus were retrograde labelled after injection of the tracer Wheat Germ Agglutinin conjugated to Horse Radish Peroxidase into the contralateral cochlear nucleus. Light microscopy immunocytochemistry showed that 42.45% of these retrograde labelled neurons, generally strongly labelled with the tracer, were markedly glycine immunopositive, and that 57.55%, usually weakly retrograde labelled neurons, were immunonegative or weakly positive for glycine. These commissural neurons were generally GABA negative and variably immunopositive for glutamate. About 1/3rd of the commissural neurons had variably developed a rough endoplasmic reticulum whilst axo-somatic boutons covered 20-40% of the cell body. These cells were recognized as multipolar neurons of type I. Most of them were weakly glycine positive or even negative and a few appeared glycinergic. A little less than the remaining 2/3rds of the whole commissural population in the postero-ventral cochlear nucleus presented a surface which was 65-85% covered with synaptic boutons, among which some also appeared labelled. These cells were recognized as multipolar neurons of type II. Many microtubules and neurofilaments were present, free ribosomes being more numerous around Nissl bodies with short cisternae. A few low retrograde labelled type II were weakly or non glycinergic. A small number of large to giant neurons type II, strongly retrograde labelled, appeared to be glycine positive, consistently GABA negative and variably glutamate positive. A very small proportion of retrograde labelled neurons appeared having the characteristics of globular bushy neurons. Their weak labelling, however, suggests that they project by collaterals or thin axons to the contralateral cochlear nucleus. Spherical bushy cells in the rat anteroventral cochlear nucleus lack the nuclear capping of rough endoplasmic reticulum observed in the cat, and none was labelled after injection into the contralateral cochlear nucleus. Globular and spherical neurons were variably glutamate positive but glycine and GABA negative. In conclusion, the present study suggests that commissural neurons include a small number of strongly labelled large to giant glycinergic and presumably inhibitory type II and, less frequently type I. A large group of less heavily labelled commissural neurons of type I and II contain low levels or no glycine, which is probably used for metabolic purposes rather than as a neurotransmitter. This suggests that these neurons are presumably excitatory. 相似文献
19.
S Kuwada R Batra TC Yin DL Oliver LB Haberly TR Stanford 《Canadian Metallurgical Quarterly》1997,17(19):7565-7581
The inferior colliculus (IC) is a major auditory structure that integrates synaptic inputs from ascending, descending, and intrinsic sources. Intracellular recording in situ allows direct examination of synaptic inputs to the IC in response to acoustic stimulation. Using this technique and monaural or binaural stimulation, responses in the IC that reflect input from a lower center can be distinguished from responses that reflect synaptic integration within the IC. Our results indicate that many IC neurons receive synaptic inputs from multiple sources. Few, if any, IC neurons acted as simple relay cells. Responses often displayed complex interactions between excitatory and inhibitory sources, such that different synaptic mechanisms could underlie similar response patterns. Thus, it may be an oversimplification to classify the responses of IC neurons as simply excitatory or inhibitory, as is done in many studies. In addition, inhibition and intrinsic membrane properties appeared to play key roles in creating de novo temporal response patterns in the IC. 相似文献
20.
In everyday life we continually need to detect signals against a background of interfering noise (the "cocktail party effect"): a task that is much easier to accomplish using two ears. The binaural masking level difference (BMLD) measures the ability of listeners to use a difference in binaural attributes to segregate sound sources and thus improve their discriminability against interfering noises. By computing the detectability of tones from rate-versus-level functions in the presence of a suprathreshold noise, we previously demonstrated that individual low-frequency delay-sensitive neurons in the inferior colliculus are able to show BMLDs. Here we consider the responses of a population of such neurons when the noise level is held constant (as conventionally in psychophysical paradigms). We have sampled the responses of 121 units in the inferior colliculi of five guinea pigs to identical noise and 500 Hz tones at both ears (NoSo) and to identical noise but with the 500 Hz tone at one ear inverted (NoSpi). The result suggests that the neurons subserving detection of So tones in No (identical noise at the two ears) noise are those neurons with best frequencies (BFs) close to 500 Hz that respond to So tones with an increase in their discharge rate from that attributable to the noise. The detection of the inverted (Spi) signal is also attributable to neurons with BFs close to 500 Hz. However, among these neurons, the presence of the Spi tone was indicated by an increased discharge rate in some neurons and by a decreased discharge rate in others. 相似文献