首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dietary sesamin on the hepatic metabolism of arachidonic (AA) and eicosapentaenoic (EPA) acids, were investigated with respect to their β-oxidation and secretion as triacylglycerol (TG). For 2 wk, rats were fed three types of dietary oils: (i) corn oil (control) group; (ii) FPA group: FPA ethyl esters/rapeseed oil=2∶3; (iii) AA group: AA ethyl esters/palm oil/perilla oil=2∶2∶1, with or without 0.5% (w/w) of sesamin. Dietary sesamin significantly increased the activities of hepatic mitochondrial and peroxisomal fatty acid oxidation enzymes (mitochondrial carnitine acyltransferase I, acyl-CoA dehydrogenase, and peroxisomal acyl-CoA oxidase). Dietary FPA increased mitochondrial carnitine acyltransferase I and peroxisomal acyl-CoA oxidase. Dietary AA, however, had an effect on peroxisomal acyl-CoA oxidase only. In whole liver and the TG fraction, EPA and AA concentrations were significantly increased by dietary EPA and AA, respectively, and were decreased by dietary sesamin. In hepatic mitochondria and peroxisomes, EPA concentration was increased by dietary EPA, but AA was not changed by dietary AA. The addition of dietary sesamin to the EPA-supplemented diet significantly decreased the EPA concentration compared to concentrations found with consumption of dietary EPA alone. These results suggest that sesamin increased β-oxidation enzyme activities and reduced hepatic EPA and AA concentrations by degradation. The stimulating effect of sesamin on β-oxidation, however, was more significant in the EPA group than in the AA group. Hepatic AA concentration was altered by the joint effect of sesamin through esterification into TG and the stimulation of β-oxidation.  相似文献   

2.
NMRI mice were fed diets supplemented with 0.05, 0.2, or 2% (w/w) docosahexaenoic acid (DHA), a polyunsaturated fatty acid present in fish oil, for 3 d, 3 wk, or 3 mon. The doses of DHA were chosen to supply the mice with concentrations of DHA which approximate those that have been reported to be beneficial to patients with peroxisomal disease. Diets containing 0.05 or 0.2% DHA did not change hepatic, myocardial, and renal catalase (EC 1.11.1.6) activity except for a slight but significant increase (to 120%) in myocardial catalase activity in mice treated with the 0.05% DHA diet for 3 mon. A diet with 2% DHA induced myocardial catalase activity to 150% after both 3 d and 3 wk of administration. In the liver of mice fed this diet for 3 wk, hepatic catalase activity was increased to 140% while no induction of palmitoyl-CoA oxidase (EC 1.3.99.3), urate oxidase (EC 1.7.3.3), andl-α-hydroxyisovalerate oxidase (EC 1.1.3.a) was observed. With the light microscope, no changes in peroxisomal morphology were visually evaluated in catalase stained sections of liver, myocardium, and kidney of mice fed either diet. Our results show that in healthy mice a low dietary DHA dose (<0.2%; this corresponds to a dose prescribed to peroxisomal patients) has no effect on several hepatic peroxisomal H2O2-producing enzymes, including the rate-limiting enzyme of the peroxisomal fatty acid β-oxidation. This may indicate that such a DHA dose will not add a strong load on the often disturbed fatty acid metabolism in the liver of patients with peroxisomal disorders.  相似文献   

3.
Repeated administration of highly purified eicosapentaenoic acid (as ethyl ester) resulted in a decrease in plasma triglycerides and high density lipoprotein (HDL) cholesterol. This was accompanied by a stimulation in the activities of carnitine palmitoyltransferase, fatty acyl-CoA oxidase and peroxisomal β-oxidation in the liver. The results suggest that the triglyceride-lowering effect observed with eicosapentaenoic acid may be due to a reduced supply of fatty acids for hepatic triglyceride synthesis because of increased fatty acid oxidation. Eicosapentaenoic acid feeding marginally affected the triglyceride content of heart and mitochondrial and peroxisomal enzyme activities.  相似文献   

4.
The aim of the present study was to investigate whether eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) was responsible for the triglyceride-lowering effect of fish oil. In rats fed a single dose of EPA as ethyl ester (EPA-EE), the plasma concentration of triglycerides was decreased at 8 h after acute administration. This was accompanied by an increased hepatic fatty acid oxidation and mitochondrial 2,4-dienoyl-CoA reductase activity. The steady-state level of 2,4-dienoyl-CoA reductase mRNA increased in parallel with the enzyme activity. An increased hepatic long-chain acyl-CoA content, but a reduced amount of hepatic malonyl-CoA, was obtained at 8 h after acute EPA-EE treatment. On EPA-EE supplementation, both EPA (20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3) increased in the liver, whereas the hepatic DHA (22:6n-3) concentration was unchanged. On DHA-EE supplementation retroconversion to EPA occurred. No statistically significant differences were found, however, for mitochondrial enzyme activities, malonyl-CoA, long-chain acyl-CoA, plasma lipid levels, and the amount of cellular fatty acids between DHA-EE treated rats and their controls at any time point studied. In cultured rat hepatocytes, the oxidation of [1-14C]palmitic acid was reduced by DHA, whereas it was stimulated by EPA. In thein vivo studies, the activities of phosphatidate phosphohydrolase and acetyl-CoA carboxylase were unaffected after acute EPA-EE and DHA-EE administration, but the fatty acyl-CoA oxidase, the rate-limiting enzyme in peroxisomal fatty acid oxidation, was increased after feeding these n-3 fatty acids. The hypocholesterolemic properties of EPA-EE may be due to decreased 3-hydroxy-3-methylglutaryl-CoA reductase activity. Furthermore, replacement of the ordinary fatty acids, i.e., the monoenes (16:1n-7, 18:1n-7, and 18:1n-9) with EPA and some conversion to DPA concomitant with increased fatty acid oxidation is probably the mechanism leading to changed fatty acid composition. In contrast, DHA does not stimulate fatty acid oxidation and, consequently, no such displacement mechanism operates. In conclusion, we have obtained evidence that EPA, and not DHA, is the fatty acid primarily responsible for the triglyceride-lowering effect of fish oil in rats.  相似文献   

5.
The effect of eicosapentaenoic acid (EPA) on fatty acid oxidation and on key enzymes of triglyceride metabolism and lipogenesis was investigated in the liver of rats. Repeated administration of EPA to normolipidemic rats resulted in a time-dependent decrease in plasma triglycerides, phospholipids and cholesterol. The triglyceride-lowering effect was observed after one day of feeding whereas lowering of plasma cholesterol and phospholipids was observed after five days of treatment. The triglyceride content of liver was reduced after two-day treatment. At that time, increased mitochondrial fatty acid oxidation occurred whereas mitochondrial and microsomal glycerophosphate acyltransferase was inhibited. The phosphatidate phosphohydrolase activity was unchanged. Adenosine triphosphate:citrate lyase, acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase were inhibited during the 15 d of EPA treatment whereas peroxisomal β-oxidation was increased. At one day of feeding, however, when the hypotriglyceridemic effect was established, the lipogenic enzyme activities were reduced to the same extent in palmitic acid-treated animals as in EPA-treated rats. In cultured rat hepatocytes, the oxidation of [14C]palmitic acid to carbon dioxide and acid-soluble products was stimulated in the presence of EPA. These results suggest that the instant hypolipidemia in rats given EPA could be explained at least in part by a sudden increase in mitochondrial fatty acid oxidation, thereby reducing the availability of fatty acids for lipid synthesis in the liver for export,e.g., in the form of very low density lipoproteins, even before EPA induced peroxisomal fatty acid oxidation, reduced triglyceride biosynthesis and diminished lipogenesis.  相似文献   

6.
It has recently been shown that the ω3 fatty acid status in humans can be predicted by the concentration of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in plasma phospholipids [Bjerve, K.S., Brubakk, A.M., Fougner, K.J., Johnsen, H., Midjthell, K., and Vik, T. (1993)Am. J. Clin. Nutr., in press]. In countries with low intake of ω3 fatty acids, the level of EPA in plasma phospholipids is often only about one-fifth the concentration of DHA. The purpose of this study was to investigate whether this difference in the concentration of these two fatty acids was due to a selective loss of EPA relative to DHA or to a lower dietary intake of EPA. Seven female volunteers ingested four grams of MaxEPA daily for 2 wk and in the following 4 wk they ate a diet almost completely devoid of the long-chain ω3 fatty acids. The concentrations of the ω3 fatty acids in the plasma cholesteryl esters, triglycerides and phospholipids and the high density lipoprotein phospholipids were examined at weekly intervals throughout the study. There was a more rapid rise in the concentration of EPA than in DHA levels in the supplementation period in all lipid fractions, but there was a disproportionate rise in DHA relative to EPA in the plasma lipids compared with the ratio in the supplement. In the depletion phase there was a rapid disappearance of EPA from all fractions, such that pre-trial levels were reached by one week post-supplementation. The disappearance of DHA was slower, particularly for the plasma phospholipids: at 4 wk post-supplementation, the DHA concentration in this fraction was still 40% above the pre-trial value. It is suggested that the low plasma EPA values relative to DHA are the result of increased β-oxidation of EPA and/or low dietary intake, rather than a rapid conversion of EPA to DHA. One practical result of this experiment is that, compared with DHA, the maintenance of increased EPA levels in plasma (and therefore tissues) would require constant inputs of EPA due to its more rapid loss from the plasma.  相似文献   

7.
Perfluoro-n-decanoic acid (PFDA) produces toxic effects in rodents similar to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin. A single, intraperitoneal dose (50 mg/kg) of PFDA to Sprague-Dawley rats caused disruption of the endoplasmic reticulum, mitochondrial swelling and increases in intracellular lipid droplets in hepatocytes similar to effects reported previously in dioxin toxicity. PFDA treatment led to large decreases in the activity of plasma membrane alkaline phosphodiesterase and mitochondrial cytochrome c oxidase without affecting lysosomal N-acetyl-β-glucoaminidase, endoplasmic reticulum NADPH-cytochrome c reductase or peroxisomal catalase activities. PFDA treatment led to moderate peroxisome proliferation and to very large (20–40-fold) increases in the activity of fatty acyl-CoA oxidase, the rate-limiting enzyme in the peroxisomal system of fatty acid β-oxidation.  相似文献   

8.
The study was undertaken to determine whether eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), esterified in phospholipids (PL) as liposomes or in triglycerides (TG) as oil, exhibited comparable fates in liver lipids and whether these fates were associated with gene expressions related to fatty acid (FA) metabolism. PL and TG mixtures with close contents in EPA and DHA were administered to rats over 2 weeks. Most relevant events occurred after 3 days for both treatments. At that time, liposomes, compared with oil, increased the liver content in PL with a FA composition enriched in n-6 FA, comparable in DHA and much lower in EPA. Moreover, liposomes increased the activity and mRNA levels of carnitine palmitoyltransferase (CPT) I. In contrast, fish oil exerted opposite effects on CPT I and increased the genic expression of lipogenic enzymes. Liposomes, unlike fish oil, apparently increased the mRNA levels of acyl-CoA oxidase and the activity of the peroxisomal FA-oxidising system. Concomitantly, mRNA levels of hepatic lipoprotein receptors were increased with both diets, but intracellular proteins involved in free FA uptake and lipid synthesis were up-regulated only with liposome-treated rats. The quasi absence of EPA in hepatic PL of liposome-treated rats on the short term could result from increased β-oxidation activities through metabolic regulations induced by more available free EPA and other PUFA.  相似文献   

9.
Synthesis of docosahexaenoic acid (DHA) from its metabolic precursors contributes to membrane incorporation of this FA within the central nervous system. Although cultured neural cells are able to produce DHA, the membrane DHA contents resulting from metabolic conversion do not match the high values of those resulting from supplementation with preformed DHA. We have examined whether the DHA precursors down-regulate the incorporation of newly formed DHA within human neuroblastoma cells. SH-SY5Y cells were incubated with gradual doses of alpha-linolenic acid (alpha-LNA), EPA, or docosapentaenoic acid (DPA), and the incorporation of DHA into ethanolamine glycerophospholipids was analyzed as a reflection of synthesizing activity. The incorporation of EPA, DPA, and preformed DHA followed a dose-response saturating curve, whereas that of DHA synthesized either from alpha-LNA, EPA, or DPA peaked at concentrations of precursors below 15-30 microM and sharply decreased with higher doses. The mRNA encoding for six FA metabolism genes were quantified using real-time PCR. Two enzymes of the peroxisomal beta-oxidation, L-bifunctional protein and peroxisomal acyl-CoA oxidase, were expressed at lower levels than fatty acyl-CoA ligase 3 (FACL3) and delta6-desaturase (delta6-D). The delta6-D mRNA slightly increased between 16 and 48 h of culture, and this effect was abolished in the presence of 70 microM EPA. In contrast, the EPA treatment resulted in a time-dependent increase of FACL3 mRNA. The terminal step of DHA synthesis seems to form a "metabolic bottleneck," resulting in accretion of EPA and DPA when the precursor concentration exceeds a specific threshold value. We conclude that the critical precursor- concentration window of responsiveness may originate from the low basal expression level of peroxisomal enzymes.  相似文献   

10.
The purpose of this study was to investigate in healthy humans the effect of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake, alone or in combination with dL-α-tocopherol acetate (vitamin E) supplements on lipid peroxidation. Eightly men were randomly assigned in a double-blind fashion to take daily for 6 wk either menhaden oil (6.26 g, n−3 fatty acids) or olive oil supplements with either vitamin E (900 IU) or its placebo. Antioxidant vitamins, phospholipid composition, malondialdehyde (MDA), and lipid peroxides were measured in the plasma at baseline and week 6. At the same time, breath alkane output was measured. Plasma α-tocopherol concentration increased in those receiving vitamin E (P<0.0001). In those supplemented with n−3 fatty acids, EPA and DHA increased in plasma phospholipids (P<0.0001) and plasma MDA and lipid peroxides increased (P<0.001 and P<0.05, respectively). Breath alkane output did not change significantly and vitamin E intake did not prevent the increase in lipid peroxidation during menhaden oil supplementation. The results demonstrate that supplementing the diet with n−3 fatty acids resulted in an increase in lipid peroxidation, as measured by plasma MDA release and lipid peroxide products, which was not suppressed by vitamin E supplementation.  相似文献   

11.
Fourteen healthy male volunteers were given two separate high-saturated-fat meals with and without the addition of 4 g highly purified ethyl esters of either eicosapentaenoic acid (EPA) (95% pure, n=7) or docosahexaenoic acid (DHA) (90% pure, n=7) supplied as 1-g capsules each containing 3.4 mg vitamin F. The chylomicrons were isolated 6 h after the meals, at peak concentrations of n−3 fatty acids (FA). Addition of n−3 FA with the meal caused a 10.4-fold increase in the concentration of n−3 FA in chylomicrons compared to the saturated fat meal without addition of n−3 FA. After the saturated-fat meal, the concentration of thiobarbituric acid-reactive substances (TBARS) was 327.6±34.6 nmol/mmol triacylglycerol (TAG), which increased to 1015.8±212.0 nmol/mmol TAG (P<0.0001, n=14) after EPA and DHA were added to the meal. There was no significant correlation between the concentrations of TBARS and vitamin E in the chylomicrons collected 6 h after the test meal. The present findings demonstrate an immediate increase in chylomicron peroxidation ex vivo provided by intake of highly purified n−3 FA. The capsular content of vitamin E was absorbed into chylomicrons, but the amount of vitamin E was apparently not sufficient to protect chylomicrons against lipid peroxidation ex vivo. Daily intake of 4 g n−3 FA either as EPA or DHA for 5 wk did not change the plasma concentration of TBARS. Although not significantly different between groups, DHA supplementation decreased total glutathione in plasma (P<0.05) and EPA supplementation increased plasma concentration of vitamin E (P<0.05). The other lipid-soluble and polar antioxidants in plasma remained unchanged during 5 wk of intervention with highly purified n−3 FA.  相似文献   

12.
Weanling rats were fed a riboflavin-deficient diet. The mitochondrial fatty acid oxidation in liver was depressed in riboflavin deficiency but restored after supplementation of riboflavin. Among the enzymes involved in this system, only the acyl-CoA dehydrogenase (EC 1.3.99.2 and 1.3.99.3) activities varied with the change in fatty acid oxidation. An accumulation of the apoforms of acyl-CoA dehydrogenases was found in riboflavin deficiency. The levels of electron transfer flavoprotein and other enzymes involved in the β-oxidation system remained unchanged. The peroxisomal fatty acid oxidation and levels of individual enzymes of this system remained constant. No accumulation of the apoform of acyl-CoA oxidase was observed under simple, riboflavin-deficient conditions. However, accumulation of a large amount of apo-acyl-CoA oxidase was observed when the peroxisomal system was induced by administration of a peroxisome proliferator, di(2-ethylhexyl)phthalate, under riboflavin-deficient conditions.  相似文献   

13.
In view of the promising future for use of n-3 polyunsaturated fatty acids (PUFA) in the prevention of cancer and cardiovascular diseases, it is necessary to ensure that their consumption does not result in detrimental oxidative effects. The aim of the present work was to test a hypothesis that low doses of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) do not induce harmful modifications of oxidative cell metabolism, as modifications of membrane fatty acid composition occur. Wistar rats received by gavage oleic acid, EPA, or DHA (360 mg/kg body weight/day) for a period of 1 or 4 wk. Fatty acid composition and α-tocopherol content were determined for plasma, red blood cell (RBC) membranes, and liver, kidney, lung, and heart microsomal membranes. Susceptibility to oxidative stress induced by tert-butylhydroperoxide was measured in RBC. EPA treatment increased EPA and docosapentaenoic acid (DPA) content in plasma and in all the membranes studied. DHA treatment mainly increased DHA content. Both treatments decreased arachidonic acid content and n-6/n-3 PUFA ratio in the membranes, without modifying the Unsaturation Index. No changes in tissue α-tocopherol content and in RBC susceptibility to oxidative stress were induced by either EPA or DHA treatment. The data suggest that EPA and DHA treatments can substantially modify membrane fatty acids, with-out increasing susceptibility to oxidative stress, when administered at low doses. This opens the possibility for use of low doses of n-3 PUFA for chemoprevention without risk of detrimental secondary effects.  相似文献   

14.
Lise Madsen  Rolf K. Berge 《Lipids》1999,34(5):447-456
The aim of the present study was to investigate the hepatic regulation and β-oxidation of long-chain fatty acids in peroxisomes and mitochondria, after 3-thia- tetradecylthioacetic acid (C14-S-acetic acid) treatment. When palmitoyl-CoA and palmitoyl-l-carnitine were used as substrates, hepatic formation of acid-soluble products was significantly increased in C14-S-acetic acid treated rats. Administration of C14-S-acetic acid resulted in increased enzyme activity and mRNA levels of hepatic mitochondrial carnitine palmitoyltransferase (CPT)-II. CPT-II activity correlated with both palmitoyl-CoA and palmitoyl-l-carnitine oxidation in rats treated with different chain-length 3-thia fatty acids. CPT-I activity and mRNA levels were, however, marginally affected. The hepatic CPT-II activity was mainly localized in the mitochondrial fraction, whereas the CPT-I activity was enriched in the mitochondrial, peroxisomal, and microsomal fractions. In C14-S-acetic acid-treated rats, the specific activity of peroxisomal and microsomal CPT-I increased, whereas the mitochondrial activity tended to decrease. C14-S-Acetyl-CoA inhibited CPT-I activity in vitro. The sensitivity of CPT-I to malonyl-CoA was unchanged, and the hepatic malonyl-CoA concentration increased after C14-S-acetic acid treatment. The mRNA levels of acetyl-CoA carboxylase increased. In hepatocytes cultured from palmitic acid- and C14-S-acetic acid-treated rats, the CPT-I inhibitor etomoxir inhibited the formation of acid-soluble products 91 and 21%, respectively. In contrast to 3-thia fatty acid treatment, eicosapentaenoic acid treatment and starvation increased the mitochondrial CPT-I activity and reduced its malonyl-CoA sensitivity. Palmitoyl-l-carnitine oxidation and CPT-II activity were, however, unchanged after either EPA treatment or starvation. The results from this study open the possibility that the rate control of mitochondrial β-oxidation under mitochondrion and peroxisome proliferation is distributed between an enzyme or enzymes of the pathway beyond the CPT-I site after 3-thia fatty acid treatment. It is suggested that fatty acids are partly oxidized in the peroxisomes before entering the mitochondria as acylcarnitines for further oxidation.  相似文献   

15.
Decreased triacylglycerol synthesis within hepatocytes due to decreased diacylglycerol acyltransferase (DGAT) activity has been suggested to be an important mechanism by which diets rich in fish oil lower plasma triacylglycerol levels. New findings suggest that eicosapentaenoic acid (EPA), and not docosahexaenoic acid (DHA), lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation and decreased availability of fatty acids for triacylglycerol synthesis. To contribute to the understanding of the triacylglycerol-lowering mechanism of fish oil, the different metabolic properties of EPA and DHA were studied in rat liver parenchymal cells and isolated rat liver organelles. EPA-CoA was a poorer substrate than DHA-CoA for DGAT in isolated rat liver microsomes, and in the presence of EPA, a markedly lower value for the triacyl[3H]glycerol/diacyl[3H]glycerol ratio was observed. The distribution of [1-14C]palmitic acid was shifted from incorporation into secreted glycerolipids toward oxidation in the presence of EPA (but not DHA) in rat liver parenchymal cells. [1-14C]EPA was oxidized to a much greater extent than [1-14C]DHA in rat liver parenchymal cells, isolated peroxisomes, and especially in purified mitochondria. As the oxidation of EPA was more effective and sensitive to the CPT-I inhibitor, etomoxir, when measured in a combination of both mitochondria and peroxisomes, we hypothesized that both are involved in EPA oxidation, whereas DHA mainly is oxidized in peroxisomes. In rats, EPA treatment lowered plasma triacylglycerol and increased hepatic mitochondrial fatty acid oxidation and carnitine palmitoyltransferase (CPT)-I activity in both the presence and absence of malonyl-CoA. Whereas only EPA treatment increased the mRNA levels of CPT-I, DHA treatment increased the mRNA levels of peroxisomal fatty acyl-CoA oxidase and fatty acid binding protein more effectively than EPA treatment. In conclusion, EPA and DHA affect cellular organelles in relation to their substrate preference. The present study strongly supports the hypothesis that EPA, and not DHA, lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation.  相似文献   

16.
The peroxidation of different polyunsaturated fatty acids (PUFA) after photoirradiation in aqueous solution was evaluated by measuring fatty acid loss and malonaldehyde production in medium. The oxidation rates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two highly unsaturated fatty acids of the n−3 series, were surprisingly lower (14 and 22%, respectively) than the oxidation rates of linoleic, α-linolenic, γ-linolenic, dihomo γ-linolenic, and arachidonic acids (62–90%). The quantities of malonaldehyde (MA) produced were assayed simultaneously by gas chromatography (GC) and high performance liquid chromatography (HPLC). MA production was found to be related to both the degree of unsaturation and the metabolic series of the fatty acid. The maximum value was observed with arachidonic acid (MA production from 2 mM arachidonic acid in aqueous solution was estimated at 44.9±6.0 μM by GC and 46.8 ±4.0 μM by HPLC). Eicosapentaenoic acid and docosahexaenoic acid produced lower MA quantities compared to arachidonic acid (MA production from 2 mM EPA and 2 mM DHA was estimated at 17.9±1.5 μM and 37.9±0.7 μM, respectively, by GC, and 26.3±4.9 μM and 37.3±4.2 μM, respectively, by HPLC). The MA yield, defined as the amount of MA (nmols) produced per 100 nanomoles of oxidized fatty acid, was used to express the susceptibility of individual PUFA to peroxidation. The MA yield correlated well with the degree of unsaturation, but was independent of carbon chain length and metabolic series. The study suggests that adequate assessment of lipid peroxidation cannot be achieved by measuring MA formation alone, but it also requires knowledge of the fatty acid composition of the system studied.  相似文献   

17.
The effects of n-3 fatty acid supplementation in the form of fresh fish, fish oil, and docosahexaenoic acid (DHA) oil on the fatty acid composition of plasma lipid fractions, and platelets and erythrocyte membranes of young healthy male students were examined. Altogether 59 subjects (aged 19–32 yr, body mass index 16.8–31.3 kg/m2) were randomized into the following diet groups: (i) control group; (ii) fish diet group eating fish meals five times per week [0.38±0.04 g eicosapentaenoic acid (EPA) and 0.67±0.09 g DHA per day]; (iii) DHA oil group taking algae-derived DHA oil capsules (1.68 g/d DHA oil group taking algae-derived DHA oil capsules (1.68 g/d DHA in triglyceride form); and (iv) fish oil group (1.33 g EPA and 0.95 g DHA/d as free fatty acids) for 14 wk. The fatty acid composition of plasma lipids, platelets, and erythrocyte membranes was analyzed by gas chromatography. The subjects kept 4-d food records four times during the study to estimate the intake of nutrients. In the fish diet, in DHA oil, and in fish oil groups, the amounts of n-3 fatty acids increased and those of n-6 fatty acids decreased significantly in plasma lipid fractions and in platelets and erythrocyte membranes. A positive relationship was shown between the total n-3 polyunsaturated fatty acids (PUFA) and EPA and DHA intake and the increase in total n-3 PUFA and EPA and DHA in all lipid fractions analyzed. DHA was preferentially incorporated into phospholipid (PL) and triglyceride (TG) and there was very little uptake in cholesterol ester (CE), while EPA was preferentially incorporated into PL and CE. The proportion of EPA in plasma lipids and platelets and erythrocyte membranes increased also by DHA supplementation, and the proportion of linoleic acid increased in platelets and erythrocyte membranes in the DHA oil group as well. These results suggest retroconversion of DHA to EPA and that DHA also interferes with linoleic acid metabolism.  相似文献   

18.
The effect of oral administration of purified (95%) eicosapentaenoic acid on serum lipids, hepatic peroxisomal enzymes, antioxidant enzymes and lipid peroxidation was compared with that of palmitic acid fed mice and corresponding controls. After 10 d, a dose of 1000 mg eicosapentaenoic acid per day/kg body weight lowered serum triglycerides by 45%, while no significant change in serum cholesterol level was noted in comparison to palmitic acid fed mice and controls. Hepatic acyl-CoA oxidase and catalase activities increased by 50% and 30%, respectively, in the eicosapentaenoic acid fed group. In addition, the hepatic reduced glutathione content and the activities of glutathione transferase, glutathione peroxidase and glutathione reductase, increased significantly during eicosapentaenoic acid treatment. The levels of hepatic lipid peroxides were lower after eicosapentaenoic acid feeding, while no significant change was noted in the palmitic acid fed mice when compared to the controls. Taken together, the present data demonstrate for the first time that at hypolipidemic doses eicosapentaenoic acid feeding i) enhances the hepatic antioxidant defense, and ii) does not cause a significant differential induction of the two peroxisomal enzymes, acyl-CoA oxidase and catalase, as was noted after administration of hypolipidemic peroxisome proliferating compounds, such as clofibrate in rodents.  相似文献   

19.
Atlantic salmon (Salmo salar) (90 g) were fed four different diets for 21 weeks (final weight 344 g). The levels of n-3 highly unsaturated fatty acids (HUFA) ranged from 11% of the total fatty acids (FA) in the low n-3 diet to 21% in the intermediate n-3 diet, to 55 and 58% in the high n-3 diets. The high n-3 diets were enriched with either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA). Increasing dietary levels of n-3 HUFA led to increasing percentages (from 31 to 52%) of these FA in liver lipids. The group fed the highest level of DHA had higher expressions of peroxisome proliferator-activated receptor (PPAR) β and the FA β-oxidation genes acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase (CPT)-II, compared to the low n-3 groups. The high n-3 groups had reduced activity of mitochondrial cytochrome c oxidase and β-oxidation capacity, together with increased activities of superoxide dismutase (SOD) and caspase-3 activities. In the group fed the highest level of n-3 HUFA, decreased percentages of major phospholipids (PL) in the mitochondrial and microsomal membranes of the liver were also apparent. The percentage of mitochondrial cardiolipin (Ptd2Gro) was 3.1 in the highest n-3 group compared to 6.6 in the intermediate group. These data clearly show an increased incidence of oxidative stress in the liver of fish fed the high n-3 diets.  相似文献   

20.
The objective of this study was to investigate the use of lipases as catalysts for producing concentrates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil as an alternative to conventional chemical procedures. Transesterification of fish oil with ethanol was conducted under anhydrous solvent-free conditions with a stoichiometric amount of ethanol. Among the 17 lipases tested, the results showed that Pseudomonas lipases had the highest activity toward the saturated and monounsaturated fatty acids in the fish oil, much lower activity toward EPA and DHA and, at the same time, good tolerance toward the anhydrous alcoholic conditions. With 10 wt% of lipase, based on weight of the fish oil triacylglycerol substrate (15% EPA and 9% DHA initial content), a 50% conversion into ethyl esters was obtained in 24 h at 20°C, in which time the bulk of the saturated and monounsaturated fatty acids reacted, leaving the long-chain n-3 polyunsaturated fatty acids unreacted in the residual mixture as mono-, di-, and triacylglycerols. This mixture comprised approximately 50% EPA+DHA. Total recovery of DHA and EPA was high, over 80% for DHA and more than 90% for EPA. The observed fatty acid selectivity, favoring DHA as a substrate, was most unusual because most lipases favor EPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号