首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用离子注入技术对射频磁控溅射制备的ZnO薄膜进行N掺杂,通过退火实现了ZnO薄膜的p型转变.利用X射线衍射(XRD)和Hall实验对样品热退火前后的性能进行了研究.实验数据表明,该掺杂方法能得到稳定的p型ZnO薄膜,其电学性能随热退火温度的升高和时间的延长而进一步改善,其中在950℃、7min退火条件时,载流子浓度为1.68E 16cm-3,电阻率为41.5Ω·cm.  相似文献   

2.
喷雾热解法生长N掺杂ZnO薄膜机理分析   总被引:8,自引:0,他引:8  
通过超声喷雾热解工艺,以醋酸锌和醋酸铵的混合水溶液为前驱溶液,在单晶Si(100) 衬底上制备了N掺杂ZnO薄膜,采用热质联用分析(TG—DSC—MS)、X射线衍射(XRD)、场发射扫描电镜(FESEM)和霍耳效应(Hall-effect)测试等手段研究了喷雾热解工艺下N掺杂ZnO薄膜的生长机理、晶体结构和电学性能.结果表明,随衬底温度的不同,薄膜呈现出不同的生长机理,从而影响薄膜的晶体结构和电学性能.在优化的衬底温度下,实现了ZnO薄膜的p型掺杂,得到的p型ZnO薄膜具有优异的电学性能,载流子浓度为3.21×1018cm-3,霍耳迁移率为110cm2·V-1s-1,电阻率为1.76×10-2Ω·cm.  相似文献   

3.
溶胶-凝胶法生长(002)高度择优取向的ZnO:Al薄膜   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在石英衬底上制备了高度择优取向的ZnO:Al薄膜.用X射线衍射(XRD)、扫描电子显微镜(SEM)分别对薄膜结构和形貌进行了表征,用紫外-可见透射光谱和四探针研究了薄膜的光电性能.结果表明:制备的ZnO:Al薄膜为六角纤锌矿结构,且具有明显的c轴择优取向;Al离子的掺杂浓度和退火温度对薄膜的结构、光电性能有一定的影响,薄膜在可见光区的光透过率为80%~95%;Al的掺杂浓度为1%样品在600℃下空气中退火1h后,薄膜最低的电阻率为7.5×10-2Ω·cm.  相似文献   

4.
室温下利用磁控溅射制备了ZnO/Cu/ZnO透明导电薄膜,采用X射线衍射(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)、霍尔效应测量仪和紫外-可见分光光度计研究了薄膜的结构、形貌、电学及光学等性能与退火温度之间的关系。结果表明:退火前后薄膜均具有ZnO(002)择优取向,随着退火温度的升高,薄膜的晶化程度、晶粒粒径及粗糙度增加,薄膜电阻率先降低后升高,光学透过率和禁带宽度先升高后降低。150℃下真空退火的ZnO/Cu/ZnO薄膜的性能最佳,最高可见光透光率为90.5%,电阻率为1.28×10-4Ω·cm,载流子浓度为4.10×1021cm-3。  相似文献   

5.
采用脉冲激光沉积(PLD)法通过电离活化方式在石英和Si(100)衬底上制备了Co-N共掺ZnO薄膜,研究了N掺杂对Co-ZnO薄膜电学和磁学性能的影响.实验观察到700℃、N2O压强为15Pa时生长的Co-N共掺ZnO薄膜显示室温磁滞回线.采用XRD、SEM、XPS、霍尔测试和SQUID等手段对样品进行了测试,结果表明,所得薄膜样品具有高度的c轴择优取向,XRD图谱中并没有发现Co、N的相关分相,Co、N原子分别以替代位形式CoZn、NO存在于薄膜中.霍尔测试和SQUID测试表明,Co-N共掺ZnO薄膜呈p型,具有室温磁滞效应.与Co掺杂ZnO薄膜相比,载流子浓度降低,同时,饱和磁化强度和矫顽力有很大提高,可见,N的掺入改变了Co掺杂ZnO稀磁半导体薄膜的导电类型,并增强了磁性。  相似文献   

6.
采用射频磁控共溅射的方法制备出ZnO∶Al薄膜,以NO和O2为源气体(O2/O2+NO=75%)、等离子体浸没离子注入(PIII)方法在不同的工艺条件下得到了不同N+注入剂量的ZnO∶Al∶N薄膜,并在N2氛围下对样品进行了850℃退火处理。通过XRD图谱、霍尔效应(Hall)测试结果、光致发光光谱(PL)、紫外-可见光透射光谱等对样品的结构和性能进行了分析,着重研究了N+注入剂量对ZnO∶Al∶N薄膜性质的影响。结果表明,注入剂量控制在1015cm-2量级时,N可以通过占据O空位和替换O原子形成NO并与Al和Zn成键,对于ZnO薄膜实现p型反转是很关键的。实现p型反转的ZnO∶Al∶N薄膜载流子浓度可达2.16×1016cm-3,电阻率为8.90Ω.cm,霍耳迁移率为32.4cm2/V.s。  相似文献   

7.
采用射频磁控溅射法在玻璃衬底上制备了ZnO∶Ga透明导电薄膜(GZO)。通过X射线衍射(XRD)、四探针电导率测试、紫外可见分光光度等表征方法研究了溅射功率对薄膜结晶特性及光电性能的影响。结果表明:当溅射功率180W时制备的GZO薄膜光电性能最优,方块电阻为9.8Ω/sq,电阻率为8.6×10-4Ω·cm,霍尔迁移率为12.5cm2/V·s,载流子浓度为5.8×1020cm-3,可见光透过率超过92%。另外,研究了最优制备条件下的GZO薄膜的高温稳定性,在氩气、氧气和真空气氛下分别对薄膜进行退火处理。结果表明,氩气退火的薄膜电学性能显著提高,是显著改善GZO薄膜性能的有效方法之一;氧气退火不利于薄膜的导电性;真空退火介于两者之间。  相似文献   

8.
采用溶胶-凝胶法在普通载玻片上制备Sn掺杂ZnO薄膜(SZO薄膜)。研究空气退火、低真空退火、高真空退火、氮气退火、三高退火、循环退火6种不同退火条件对SZO薄膜光电性能的影响。结果表明:6种不同的退火条件制备的SZO薄膜均为纤锌矿结构且具有c轴择优取向生长的特性。高真空退火下,SZO薄膜的结晶状况和电学性质最优,最低电阻率可达到5.4×10~(-2)Ω·cm。薄膜的可见光区平均透过率均大于85%。薄膜在390nm和440nm附近(325nm光激发下)都出现光致发光峰,在空气、氮气、低真空中退火后薄膜440nm处发光强度最为显著。  相似文献   

9.
采用射频磁控溅射法在Si衬底上制备了Fe掺杂ZnO纳米薄膜,并在真空和空气中对其进行热处理,利用X射线衍射(XRD)、扫描电子显微(SEM)、对其微结构、表面和断面形貌进行测试。结果表明,样品均呈现六角纤锌矿结构,薄膜沿c轴方向择优生长,发现退火气氛对薄膜的微结构有一定影响,当空气中退火时,出现了最强的(002)衍射峰,晶粒变为最大,薄膜的结晶度和取向性都明显变好。利用振动样品强磁计(VSM)对样品的铁磁性进行测试,发现真空中退火的样品饱和磁化强度比空气中退火的要大得多,并经分析认为这可能是薄膜中氧缺陷引起的。  相似文献   

10.
ZnO薄膜中可见光的发射与缺陷有关,为了研究ZnO薄膜中与Zn原子缺陷相关的发光特性,将不同Zn缓冲层厚度的ZnO薄膜沉积在Si衬底上,且所有样品在400℃下真空中退火1 h,采用X射线衍射谱(XRD)、吸收谱和光致发光谱(PL)表征了样品的晶体结构和光学特性。结果表明,随着Zn缓冲层溅射时间的增加,ZnO薄膜中的紫光峰向长波段发生了红移,且所有的发光峰强度逐渐增加;缓冲层和真空中退火都使得样品中有过量的Zn原子缺陷出现,薄膜中所有的发光峰与Zn原子缺陷相关。  相似文献   

11.
采用射频磁控溅射法在石英玻璃衬底上成功制备了不同C掺杂浓度的ZnO∶C薄膜,借助于X射线衍射仪(XRD)、霍尔测试(Hall)、X射线光电子谱(XPS)和拉曼散射光谱(Raman)等测试手段系统研究了ZnO薄膜的结构、电学以及拉曼特性并分析了C在ZnO薄膜中存在形式。结果表明,所有薄膜都呈纤锌矿结构并具有高度的c轴择优取向。随着C掺杂浓度的增加,薄膜的n型导电性能不断增强,其主要原因是ZnO薄膜中的C替代Zn位起施主作用。  相似文献   

12.
磁控溅射制备五氧化二钒薄膜的研究   总被引:1,自引:0,他引:1  
采用射频磁控溅射的方法,在不同条件下制备了氧化钒薄膜样品,分别在不同温度条件下做了退火处理,并对退火前后样品做了X射线衍射(XRD)、X射线光电子能谱(XPS)和激光扫描共聚焦显微镜测试与分析,旨在得出制备良好的V2O5 薄膜的条件。  相似文献   

13.
以纯度为99.9%的98%(质量分数)ZnO、2%(质量分数)Al_2O_3陶瓷靶为溅射靶材,采用射频磁控溅射法在玻璃衬底上制备了Al_2O_3掺杂的ZnO薄膜。采用X射线衍射仪、扫描电子显微镜、紫外可见光谱仪等方法测试和分析了不同衬底温度、溅射偏压以及退火工艺对ZAO薄膜形貌结构、光电学性能的影响。结果表明,在衬底温度200℃、溅射时间30min、负偏压60V、退火温度300℃时制得的薄膜的可见光透过率为81%,最低电阻率为9.2×10~(-1)Ω·cm。  相似文献   

14.
Al、N共掺杂实现ZnO的p型转变及其掺杂机理探讨   总被引:1,自引:0,他引:1  
利用直流反应磁控溅射以Al、N共掺杂的方法生长p-ZnO薄膜.ZnO薄膜沉积于具有不同衬底温度的玻璃或Si衬底上,N来自NH3与O2的生长气氛,Al来源于AlxZn1-x(x=0.08%)靶材.利用XRD、XPS、Hall测试对其性能进行了分析.结果表明,用Al、N共掺杂的方法可以得到c轴择优取向的p型ZnO薄膜,载流子浓度为(1014~1015) cm-3,电阻率为(1.54~3.43)×103 Ω·cm,迁移率为(1.16~4.61) cm2/V·s.由Al、N共掺杂和仅掺N的两种情况下ZnO薄膜的N1s的XPS图谱可以推断出,N的掺入可能是以Al-N键的形式存在,而且Al的存在促进了N原子作为受主的掺入.  相似文献   

15.
石瑛  蒋昌忠  付强  范湘军 《功能材料》2006,37(9):1429-1432
在(0001)面的蓝宝石衬底上用低压MOCVD法生长p型GaN外延层.对p型GaN薄膜用180keV的Mn 离子注入进行磁性粒子掺杂,注入时GaN薄膜处于300℃,注入剂量分别为5.0×1015、1.0×1016和5.0×1016cm-2.对注入的样品在N2气流中进行快速热退火处理,温度为850℃,时间为30s.用超导量子干涉仪(SQUID)对样品的磁性进行了分析,在5.0×1015cm-2的注入样品中发现了较强的铁磁性;而1.0×1016和5.0×1016cm-2的Mn 离子注入样品中铁磁响应有所减弱.结合用X射线衍射(XRD)和扫描电子显微镜(SEM)对在不同剂量下Mn 注入GaN薄膜的结构、形貌和成分的分析,揭示了不同剂量磁性离子注入给GaN薄膜带来的结构、形貌和相应的铁磁性变化规律,发现只有适当的注入剂量(5.0×1015cm-2)才有利于在300℃下用180keV的Mn 注入对p型GaN薄膜进行磁性离子掺杂.  相似文献   

16.
采用阴极电沉积法,以Zn(NO3)2水溶液为电解液,在透明导电玻璃ITO衬底上制备了ZnO薄膜,用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析了ZnO薄膜的微纳结构和表面形貌.用Fluoromax-P型荧光光谱仪测量了样品的室温光致发光光谱,观察到550hm处的黄绿光发射峰,认为与样品中由导带到氧填隙引起的浅受主能级的电子跃迁有关.对样品进行500℃真空退火,研究了退火前后薄膜的结构及导电性能的变化.结果表明,退火处理使薄膜的均匀性和结晶质量得到改善,导电性明显增强.此外,还观察了薄膜的阴极射线发光.  相似文献   

17.
Al掺杂ZnO薄膜的射频磁控溅射工艺与光电性能研究   总被引:2,自引:0,他引:2  
用射频磁控溅射法制备Al掺杂ZnO(ZAO)薄膜,研究溅射与真空退火工艺对ZAO薄膜的显微结构及光电性能的影响.采用X射线衍射(XRD)对ZAO薄膜的显微结构进行了测试分析,用四探针测试仪、紫外-可见分光光度计对ZAO薄膜的光电性能进行了测试分析.结果表明:随溅射时间的增加,样品由非晶态向晶态转变,同时也出现(002)择优取向强弱的变化.退火提高了溅射时间较长的薄膜的结晶质量.溅射时间的增加使溅射态ZAO薄膜的光学带隙变窄,但退火处理则使光学禁带宽度增大.溅射时间的增加以及退火处理均使薄膜的透光率稍有下降,但所有ZAO薄膜的透光率均在90%.以上.薄膜的电阻率随溅射时间的增加先降低.后稍有回升.退火使薄膜的电阻率显著降低,当溅射时间为60min时退火后薄膜的电阻率达到最低值,为9.4 ×10-4Ω·cm,其方块电阻低至18.80Ωl/□.  相似文献   

18.
利用激光脉冲沉积法(PLD)制备了Na掺杂ZnO∶Nax薄膜(0≤x≤0.1),并较全面地研究了Na含量对ZnO∶Nax薄膜结晶质量和光电性能的影响。研究结果表明Na含量低于5%时,ZnO∶Nax薄膜能够保持良好的c轴择优取向生长。随着Na含量的增加,薄膜由本征n型转变为p型。并且当Na含量为2%时,获得p型性能良好的薄膜:电阻率为53.5Ωcm,迁移率为0.55cm2V-1s-1,空穴浓度为2.1×1017cm-3。结合XPS测试结果,我们认为p型转变是因为Na掺杂在ZnO中主要形成受主态NaZn。PL测试表明ZnO∶Na0.0 2薄膜在377nm处具有良好的室温紫外带边发射。  相似文献   

19.
《真空》2016,(3)
利用FJL560CI2型磁控溅射仪,通过改变掺杂所用的铜丝长度而保持铝丝长度不变,制备了掺杂浓度和掺杂比例不同的Cu-Al共掺ZnO薄膜。通过X射线衍射图谱来分析薄膜样品的微观结构特征,采用扫描电子显微镜观察了样品的表面形貌,样品的电学性能和光学性能分别利用HMS-2000霍尔效应测试仪和UV-3600分光光度计来测试。结果表明,向ZnO薄膜中掺杂铜铝能够将ZnO薄膜的电阻率从108数量级降到10-2数量级,而对其在可见光范围内的优良透过率几乎没有影响,Cu-Al共掺是获得透明导电ZnO薄膜的一种有效方式。  相似文献   

20.
采用溶胶-凝胶法在石英衬底上制备了高度择优取向的ZnO∶Al薄膜。用X射线衍射(XRD)、扫描电子显微镜(SEM)分别对薄膜结构和形貌进行了表征,用紫外-可见透射光谱和四探针研究了薄膜的光电性能。结果表明:制备的ZnO∶Al薄膜为六角纤锌矿结构,且具有明显的c轴择优取向;Al离子的掺杂浓度和退火温度对薄膜的结构、光电性能有一定的影响,薄膜在可见光区的光透过率为80%~95%;Al的掺杂浓度为1%样品在600℃下空气中退火1h后,薄膜最低的电阻率为7.5×10-2Ω.cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号