首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the hydrogenation of the terminal vinyl groups on the peroxide modification and rheological properties of high‐density polyethylene (HDPE) was investigated. The aim of the study was to determine exclusively the effect of the terminal vinyl groups on the peroxide crosslinking and rheological properties of HDPE with one polymer type. This was achieved by hydrogenation of the terminal vinyl groups of a commercial HDPE to obtain an identical material from a structural point of view, which differed only in the nature of the terminal unsaturations, and the comparison of its level of peroxide crosslinking with that of the original polymer. Hydrogenated and unhydrogenated polymer samples were modified at 170°C with different amounts of organic peroxide ranging from 125 to 5000 ppm. Changes in the molecular structure were determined by Fourier transform infrared spectroscopy, size exclusion chromatography, and rheological measurements. Hydrogenation of the terminal groups of the original polymer significantly reduced the rate of modification or crosslinking. The dynamic viscosity and elasticity increased with the level of peroxide modification. Unhydrogenated samples exhibited rapid increases in viscosity and elastic modulus, whereas their hydrogenated counterparts required about 500% of the amount of peroxide needed for the unhydrogenated sample to attain similar structural changes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Polymer‐modified bitumens are very important to the transportation sector. Polyethylene is one of the most used polymers in bitumen modification. The effects of the structural parameters of polyethylene on its dispersion in bitumen and the performance of the resulting polymer‐modified bitumens were studied. With the addition of different polyethylenes to bitumen, the performance of bitumen at high temperatures increased as the polymer melt‐flow index (MFI) decreased. At low temperatures, the performance of bitumen decreased as the polyethylene MFI decreased. Furthermore, a decrease in the polyethylene MFI intensified its dispersion instability. At very low MFIs, the dispersions were unstable, even under the very high shear forces applied by a double mixer. Moreover, changes in the polyethylene MFI did not improve the dispersion stability at an elevated temperature (165°C). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3183–3190, 2003  相似文献   

3.
Rheological properties and processability of thermoforming were studied for high‐density polyethylene (HDPE) and a blend of HDPE with crosslinked HDPE (xHDPE). Blending the xHDPE, which enhances melt strength and strain hardening in elongational viscosity of HDPE, helps the sheet avoid sagging in thermoforming. Moreover, the product of the blend obtained by vacuum forming has uniform wall thickness. Melt strength and strain hardening of the blend were, however, depressed by a processing history in a single‐screw extruder, whereas reprocessing by a two‐roll mill enhanced the melt strength again. It is considered that the processing history by a single‐screw extruder, in which shear‐dominant flow takes place, depresses the trapped entanglements between network chain of xHDPE and linear HDPE molecules, and results in low level of melt strength. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 79–83, 2002  相似文献   

4.
Several classes of multiple‐mode rheological constitutive equations are examined for predicting the viscoelastic flow properties of a typical polymer melt in single and double step‐strain flows. The phenomenological parameters appearing in these models have been obtained by the fitting of experimental data taken in small‐amplitude oscillatory shear and steady shear flows. The performance of the models for predicting the experimental data in the step‐strain experiments is examined in detail. Specifically, we examine whether or not mode coupling is necessary to describe the experimental behavior under step‐strain flows. Furthermore, it is demonstrated that the reversing double step‐strain experiment is a very powerful tool for testing viscoelastic constitutive equations. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Effect of applied processing history on flow instability at capillary extrusion is studied using a commercially available low‐density polyethylene (LDPE) having long‐chain branches. It is found that processing history in an internal mixer in a molten state depresses long‐time relaxation mechanism associated with long‐chain branches, which is known as “shear modification.” Consequently, the onset of output rate for melt fracture increases greatly. Furthermore, it should be noted that the sample having intense shear history shows shark‐skin failure without volumetric distortion, although it has been believed that LDPE exhibits gross melt fracture at capillary extrusion. The reduction of elongational viscosity by the alignment of long‐chain branches along to the main chain is responsible for the anomalous rheological response. As a result, the sample shows shark‐skin failure like a linear polyethylene at a lower output rate than the critical one for gross melt fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
We performed surface modification of ultra‐high‐molecular‐weight polyethylene (UHMWPE) through chromic acid etching with the aim of improving the performance of UHMWPE's composites with poly(ethylene terephthalate) fibers. In part I of this study, we evaluated the effects of chemical modification on the surface properties of UHMWPE with X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and contact angle measurements. The thermal properties, rheology, and sintering behavior of the modified UHMWPE were compared to those of the base material. XPS and FTIR analysis confirmed the presence of carboxyl and hydroxyl groups on the surface of the modified powders. The substitution of polar groups into the backbone of the polymer decreased its contact angles with water and hexadecane and increased its surface energy, as evidenced by contact angle measurements. The modified UHMWPE was more crystalline than the base resin and less prone to thermal degradation. Although the rheological properties were virtually identical, the modified powders sintered more readily, presumably due to their higher surface energy, which suggested enhanced processability by compression molding. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

7.
A viscoelastic computational model is developed that uses experimentally determined viscoelastic material properties as input and can be used to predict the behavior of a tape material in a wound roll as stresses relax over time. Experimental creep test results are used to find best‐fit creep‐compliance parameters to describe two high density data storage tape media. The two tapes used in the analysis are a developmental tape with a poly(ethylenenaphthalate) (PEN) substrate and metal particle (MP) front coat similar to linear tape open (LTO4) (referred to in this work as “Tape C”), and LTO3, a commercially available tape with a PEN substrate and MP front coat. Sets of best‐fit creep‐compliance parameters are determined for both tapes. The differences between the predicted behavior using three‐, five‐, and seven‐parameter Kelvin–Voigt models are evaluated, both for a benchmark case and in a viscoelastic wound roll model. The choice of material model is found to significantly influence the predictions of the wound roll model. The differences between different material models for the same material are on the order of the differences found between the two different materials. A material model with a higher number of creep‐compliance parameters, although more computationally expensive, produces better results, particularly over long spans of time. The relative differences between the three‐, five‐, and seven‐parameter models are shown to be qualitatively consistent for several variations in the computational model setup, allowing predictions to be made based on simple benchmarks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Linear low‐density polyethylenes and low‐density polyethylenes of various compositions were melt‐blended with a batch mixer. The blends were characterized by their melt strengths and other rheological properties. A simple method for measuring melt strength is presented. The melt strength of a blend may vary according to the additive rule or deviate from the additive rule by showing a synergistic or antagonistic effect. This article reports our investigation of the parameters controlling variations of the melt strength of a blend. The reciprocal of the melt strength of a blend correlates well with the reciprocal of the zero‐shear viscosity and the reciprocal of the relaxation time of the melt. An empirical equation relating the maximum increment (or decrement) of the melt strength to the melt indices of the blend components is proposed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1408–1418, 2002  相似文献   

9.
We have characterized the melt rheological behavior and the solid tensile properties of sawdust/polyethylene composites prepared in an internal mixer. Various concentrations (from 0 to 60 wt %) and three particle sizes have been tested, in presence of a coupling agent (maleic anhydride grafted polyethylene). In the molten state, for each particle size, a mastercurve of the complex viscosity as function of frequency can be plotted, using a shift factor depending on weight fraction. We show that the shift factors can be described by a Krieger‐Dougherty law, leading to a “universal” viscosity law of the Carreau‐Yasuda type. In the solid state, the presence of sawdust increases Young modulus in uniaxial elongation, mainly for small size particles, but reduces dramatically deformation at break and tensile strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Our main objective of this study was to study the parameters affecting the free‐radical melt grafting of maleic anhydride (MA) onto linear low‐density polyethylene (LLDPE) with dicumyl peroxide (DCP) in an internal mixer. The degree of grafting (DG) was measured with titrometry and Fourier transform infrared spectroscopy. The extent of chain‐branching/crosslinking was evaluated with gel content and melt flow index measurements. The flow behavior and melt viscoelastic properties of the grafted samples were measured by using rheometric mechanical spectrometry. Feeding order, DCP and MA concentration, reaction temperature, rotor speed, and grade of LLDPE were among parameters studied. The results show that the reactant concentration (MA and DCP) played a major role in the determination of the grafting yield and the extent of the chain‐branching/crosslinking as competitive side reactions. The order of feeding also had an appreciable effect on the DG and the side reactions. Increasing the rotor speed increased the grafting yield and reduced side reactions by means of intensification of the mixing of reactants into the polyethylene (PE) melt. Chain‐branching dominated the side reactions for lower molecular weight PE, whereas for higher molecular weight PE, chain‐branching led to crosslinking and gel formation. The results of the melt viscoelastic measurements on the grafted samples provided great insight into the understanding of the role of influential parameters on the extent of side reactions and resulting changes in the molecular structure of the grafted samples. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 141–149, 2006  相似文献   

11.
The mechanical behavior of two γ‐irradiated linear polyethylenes was determined at 75 and 105°C under tensile stress. Each polymer was crystallized from the melt after different thermal histories so that samples would be obtained with various degrees of crystallinity. Subsequently, they were irradiated in vacuo and at room temperature to total doses ranging from 20 to 200 kGy. The initial crystallinity, dose level, and test temperature determined whether the samples displayed ductile, brittle, or transitional behavior. The yield stress decreased as the temperature increased. The value of the yield stress at a given temperature showed a tendency to increase with dose; this became more evident as the initial crystallinity increased. The extensibility of ductile samples, estimated from the draw ratio after break, decreased with the gel content. For ductile samples, the temperature affected the values of this property when the gel fraction that developed in the samples was relatively low. The effect of temperature became less noticeable when the gel reached values larger than 60%. The ultimate stress, normalized with the crosslinking density, correlated with the draw ratio after break in a way that resembled the type of relationship observed in other crosslinked systems. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1925–1935, 2003  相似文献   

12.
The time–temperature superposition principle was applied to the viscoelastic properties of a kenaf‐fiber/high‐density polyethylene (HDPE) composite, and its validity was tested. With a composite of 50% kenaf fibers, 48% HDPE, and 2% compatibilizer, frequency scans from a dynamic mechanical analyzer were performed in the range of 0.1–10 Hz at five different temperatures. Twelve‐minute creep tests were also performed at the same temperatures. Creep data were modeled with a simple two‐parameter power‐law model. Frequency isotherms were shifted horizontally and vertically along the frequency axis, and master curves were constructed. The resulting master curves were compared with an extrapolated creep model and a 24‐h creep test. The results indicated that the composite material was thermorheologically complex, and a single horizontal shift was not adequate to predict the long‐term performance of the material. This information will be useful for the eventual development of an engineering methodology for creep necessary for the design of structural building products from these composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1995–2004, 2005  相似文献   

13.
Blown extruded polyethylene films without stabilizers have been exposed outdoors under severe weathering conditions in the Sahara. The chemical aspect of aging has been followed by IR spectroscopy. The mechanical aspect of aging has been monitored by means of a nondestructive method. It consists of measuring velocities and attenuations of ultrasonic waves propagating in several directions in the film plane. Stiffness constants and energy dissipation terms have been calculated. From the results obtained it is shown that stiffening of the material leads to an increase of velocities and a decrease of wave attenuation. Moreover, the stiffness constants as well as the energy dissipation terms vary with aging and show a changing anisotropic character of the films. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 559–564, 2003  相似文献   

14.
The dynamic rheological and mechanical properties of the binary blends of two conventional high‐density polyethylenes [HDPEs; low molecular weight (LMW) and high molecular weight (HMW)] with distinct different weight‐average molecular weights were studied. The rheological results show that the rheological behavior of the blends departed from classical linear viscoelastic theory because of the polydispersity of the HDPEs that we used. Plots of the logarithm of the zero shear viscosity fitted by the Cross model versus the blend composition, Cole–Cole plots, Han curves, and master curves of the storage and loss moduli indicated the LMW/HMW blends of different compositions were miscible in the melt state. The tensile yield strength of the blends generally followed the linear additivity rule, whereas the elongation at break and impact strength were lower than those predicted by linear additivity; this suggested the incompatibility of the blends in solid state. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The results of temperature‐dependent dielectric and rheological measurements are reported on polymer‐ceramic composite films, poly(methyl methacrylate) (PMMA) : lead titanate (PbTiO3). Analyses of relaxational processes of the PMMA host matrix have been investigated using temperature‐dependent dielectric and rheological measurements. It is found that the α‐relaxation is more significantly affected by the addition of filler in comparison to β‐relaxation. The composite films are found to have much lower dielectric constants in comparison to the pure ceramic material. Suitable models have been used to explain the observed dielectric constant of the composite films. Using rheological measurements, occurrence of reinforcement in these composite films due to the addition of ceramic filler has also been observed and the results are discussed in the article. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The time‐dependent behavior of low‐density polyethylene (LDPE) white color masterbatches (WCMBs), which were concentrated suspensions filled with titanium dioxide (TiO2), was found using dynamic stress rheometer. The viscosity first decreased slightly with time then continuously increased with time, and Tg(δ) (δ was the angle of loss) decreased with time, which meant the time‐dependent behavior of the elastic contribution was more pronounced than that of the viscous contribution. The higher the experimental frequency and temperature, the more pronounced the viscosity increase. However, the higher experimental stress did not lead to pronounced viscosity increase, which was attributed to the existence of small defects at higher stress. The 30 wt % of TiO2 content was critical to obvious time‐dependent behavior. The viscosity increase with time was related to the formation of a hard shell around the melt sample during the test. It was verified by thermogravimetric analysis that the TiO2 concentration at the outer surface was higher than that at the core of the sample and, because the outer surface contained more TiO2, a hard shell was formed, which impeded further deformation of the sample. This was completely different from the other reported systems with time‐dependent behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2793–2799, 2002  相似文献   

17.
High‐density polyethylene (HDPE)–wood composite samples were prepared using a twin‐screw extruder. Improved filler–filler interaction was achieved by increasing the wood content, whereas improved polymer–filler interaction was obtained by adding the compatibilizer and increasing the melt index of HDPE, respectively. Then, effects of filler–filler and polymer–filler interactions on dynamic rheological and mechanical properties of the composites were investigated. The results demonstrated that enhanced filler–filler interaction induced the agglomeration of wood particles, which increased the storage modulus and complex viscosity of composites and decreased their tensile strength, elongation at break, and notched impact strength because of the stress concentration. Stronger polymer–filler interaction resulted in higher storage modulus and complex viscosity and increased the tensile and impact strengths due to good stress transfer. The main reasons for the results were analyzed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variation of melt viscosity with shear rate and shear stress at different temperatures was studied. The effect of relative composition of component fibers on the overall rheological behavior also was examined. A temperature range of 130 to 150°C and shear rate of 16.4 to 5470 s?1 were chosen for the analysis. The melt viscosity of the hybrid composite increased with increase in the volume fraction of glass fibers and reached a maximum for the composite containing glass fiber alone. Also, experimental viscosity values of hybrid composites were in good agreement with the theoretical values calculated using the additive rule of hybrid mixtures, except at low volume fractions of glass fibers. Master curves were plotted by superpositioning shear stress and temperature results. The breakage of fibers during the extrusion process, estimated by optical microscopy, was higher for glass fiber than sisal fiber. The surface morphology of the extrudates was analyzed by optical and scanning electron microscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 432–442, 2003  相似文献   

19.
Ethylene polymers, including HDPE, Ziegler–Natta‐catalyzed LLDPE (Z–N LLDPE), metallocene‐catalyzed LLDPE (m‐LLDPE), and LDPE were thermally treated by different procedures, that is, quenching, slow cooling, and thermal segregation. These PE samples, having different thermal histories, were then irradiated with various doses, that is, 0, 13, 35, and 70 Mrad, by gamma ray using a 60Co radiation source. The melting and crystallization behaviors of these irradiated samples were studied by a differential scanning calorimeter (DSC). The effects of the thermal histories and irradiation on the polymers were evaluated by their melting temperatures (Tm), crystallization temperatures (Tc), and heat enthalpies (ΔH) in the heating and cooling scans. The results indicated that irradiation affects the samples having different thermal histories in different ways. The effects of the dosage on each kind of sample are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 536–544, 2003  相似文献   

20.
The rheological behavior, thermal properties, and molecular mobility of a series of maleic anhydride (MA) grafted high‐density polyethylenes were characterized and evaluated. The rheological behavior was studied with a Haake minilaboratory. The viscosity of the samples in their melt state decreased with an increase in the graft yield, and this could be attributed to the higher molecular mobility for samples with a higher degree of grafting. The thermal properties were investigated with dynamic mechanical analysis and differential scanning calorimetry. Positron annihilation lifetime measurements were used to study the effect of the degree of grafting on the chemical environment and the atomic‐scale free‐volume properties. It was found that the grafted MA group played a significant chemical inhibition role in positronium formation when the graft yield was low. The results also indicated that the higher the degree of grafting was, the broader the free‐volume distribution was. The relationship between the microstructure and rheological behavior is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号