首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compatibilization of mixtures of polyolefins or of polyolefins with polystyrene using either liquid polybutadiene (l-PB)/organic peroxide or styrene-butadiene-styrene (SBS) block copolymers was investigated. Tensile impact strength was chosen as a measure of compatibility. Binary blends LDPE/high-impact polystyrene (HIPS) and LDPE/poly(propylene) (PP) as well as LDPE/HDPE/PP/HIPS blends were prepared by blending in the chamber of a Brabender Plasticorder. Composition of the blends corresponds to real commingled plastic waste. It was found that l-PB-based compatibilizer enhanced the impact strength of LDPE/HIPS blends with LDPE contents higher than 60 wt.-% only. Also SBS copolymer enhanced the impact strength of LDPE/PP blends with LDPE contents higher than 40 wt.-%. Both the compatibilizers substantially increased the toughness of LDPE/HDPE/PP/HIPS blends with composition similar to the municipal plastic waste.  相似文献   

2.
A novel macromolecular compatibilizer, styrene-ethylene-propylene-styrene (SEPS) with high content of styrene, was investigated for the purpose of improving the compatibility of PP (polypropylene)/PC (polycarbonate)/POE (ethylene-octene copolymer) blends. SEPS shows a remarkable compatibilizing effect since it has a particular structure with the EP-compatible aliphatic segments, which is well miscible with the nonpolar PP and olefinic elastomer POE domains, and S-chain segments which exhibit strong affinity with PC because of the similar molecular structure. Its compatibilizing effect was examined in terms of the mechanical, morphological, and thermal properties. The compatibilized PP-based blends represent remarkable improvement in impact strength and balanced tensile strength. When 5 wt % SEPS was added to PP/PC/POE blends (20 wt % POE), the impact strength of the blends was enhanced from 24 to 43 kJ/m2 without obvious drop in the tensile strength. Their morphologies show a decreasing and much more homogeneous size of dispersed PC and POE particles through addition of SEPS, and the fracture surface morphologies change from irregular mosaic to the mix of mosaic and striation, and finally the regularly distant striation. The special morphology structure that resulted from the effect of the compatibilizer could be a key for enhancement of toughness and balanced rigidity of the blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
This work was aimed to counteract the effect of ethylene‐α‐olefin copolymers (POE) by reinforcing the polypropylene (PP)/POE blends with high density polyethylene (HDPE) particles and, thus, achieved a balance between toughness and strength for the PP/POE/HDPE blends. The results showed that addition of HDPE resulted in an increasing wide stress plateau and more ductile fracture behavior. With the increase of HDPE content, the elongation at break of the blends increased rapidly without obvious decrease of yield strength and Young's modulus, and the notched izod impact strength of the blends can reach as high as 63 kJ/m2 at 20 wt % HDPE loading. The storage modulus of PP blends increased and the glass transition temperature of each component of the blends shifted close to each other when HDPE was added. The crystallization of HDPE phase led to an increase of the total crystallinity of the blend. With increasing HDPE content, the dispersed POE particle size was obviously decreased, and the interparticle distance was effectively reduced and the blend rearranged into much more and obvious core‐shell structure. The fracture surface also changed from irregular striation to the regularly distant striations, displaying much obvious character of tough fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
In this study, polypropylene random copolymer (PPR) composites were prepared by the addition of either three kinds of thermoplastic rubber (TPR) modifiers (types 2088A, 2095, and 2096) or an ethylene–octene copolymer (POE)/high‐density polyethylene (HDPE; 2 :1 w/w) blend. Differential scanning calorimetry, wide‐angle X‐ray diffraction, and dynamic mechanical analysis were used to characterize the crystallization behaviors and dynamic mechanical properties of the PPR composites. The results indicated that PPR/POE/HDPE and PPR/TPR2088A had better comprehensive mechanical properties, especially the low‐temperature toughness among all of the samples. The obtained PPR/POE/HDPE blends showed a high toughness and good stiffness in the temperature interval from ?10 to 23°C with the addition of only 10 wt % POE/HDPE. When the temperature continued to fall below ?10°C, the PPR/TPR2088A composites exhibited a better impact toughness without a loss of too much stiffness. The good low‐temperature toughness of those two composites was attributed to both the decrease in the crystallinity and the uniform dispersion, obvious interfacial adhesion, and cavitation ability of POE/HDPE and TPR2088A in the PPR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42960.  相似文献   

5.
New polymer blends of polypropylene random copolymer (PP‐R) and poly(ethylene‐octene) (POE) were prepared by melt‐blending process using a corotating twin‐screw extruder. The POE content was varied up to 35%. The toughening efficiency of POE for PP‐R was evaluated by the mechanical properties of the resulted PP‐R/POE blends. The crystallization behavior and morphology of the blends were also studied. Results show that POE acts as nucleation agent to induce the crystallization of PP‐R matrix at higher crystallization temperature. Super‐toughened PP‐R/POE blends (Izod impact strength more than 500 J/m) can be readily achieved with only 10 wt % of POE. The high toughness of PP‐R/POE is attributed to cavitation and shear yielding of matrix PP‐R, as revealed by the morphology studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The synergistic toughening effect of nucleating agent (NA) and ethylene–octene copolymer (POE) on polypropylene was studied in the present work. Two different nucleating agents, such as α-form nucleating agent 1,3 : 2,4-bis (3,4-dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) and β-form nucleating agent aryl amides compounds (TMB-5), were selected to blend with PP or PP/POE blends, respectively. The results show that PP containing 0.5–0.25 wt % DMDBS or 0.5–0.25 wt % TMB-5 has relatively low impact strength. For PP/POE blends, although the impact strength increases gradually with the increasing of POE content, high content of POE is needed to obtain the available PP toughness. However, once nucleating agent and POE are simultaneously added into PP, PP/POE/NA blends show great improvement of toughness even at low POE content. Furthermore, the synergistic toughening effect of POE/TMB-5 is more apparent than that of POE/DMDBS. SEM results show that whether DMDBS or TMB-5 has no apparent effect on the morphologies of POE in the PP/POE/NA blends. Further investigations using DSC and POM indicate that both DMDBS and TMB-5 induce the apparent enhancement of the crystallization temperature of PP and the sharp decrease of spherulites size of PP in the PP/POE/NA blends. The possible synergistic toughening mechanism is discussed in the work. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Compatibilization of polymer blends of high‐impact polystyrene (HIPS) and high‐density polyethylene (HDPE) blend by styrene/ethylene–butylene/styrene (SEBS) was elucidated. Polymer blends containing many ratios of HIPS and HDPE with various concentrations of SEBS were prepared. The Izod impact strength and elongation at break of the blends increased with increases in SEBS content. They increased markedly when the HDPE content was higher than 50 wt %. Tensile strength of blends increased when the SEBS concentration was not higher than 5 pphr. Whenever the SEBS loading was higher than 5 pphr, the tensile strength decreased and a greater decrease was found in blends in which the HDPE concentration was more than 50 wt %. The log additivity rule model was applied to these blends, which showed that the blends containing the HIPS‐rich phase gave higher compatibility at the higher shear rates. Surprisingly, the blends containing the HDPE‐rich phase yielded greater compatibility at the lower shear rates. Morphology observations of the blends indicated better compatibility of the blends with increasing SEBS concentration. The relaxation time (T2) values from the pulsed NMR measurements revealed that both polymer blends became more compatible when the SEBS concentration was increased. When integrating all the investigations of compatibility compared with the mechanical properties, it is possible to conclude that SEBS promotes a certain level of compatibilization for several ratios of HIPS/HDPE blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 742–755, 2004  相似文献   

8.
Mechanical properties and morphologies of nylon 11/ethylene‐octene copolymer blends have been investigated. The ethylene‐octene copolymer (POE) employed in this study was grafted with maleic anhydride (MAH) and thus has the potential to react with the amine group of nylon 11. Nylon 11/POE‐g‐MAH and nylon 11/POE/POE‐g‐MAH blends with varying MAH graft ratios were prepared. In this paper, the effect of MAH graft ratio on ductile‐brittle transition temperature (DBTT), mechanical properties, and morphology of blends was studied. The results showed that incorporation of POE‐g‐MAH could remarkably improve the compatibility between the nylon and POE elastomers, thus increasing the toughness of the resultant blends. The compatibilizing effect on impact strength became more pronounced with increasing MAH graft ration. DBTTs of blends were initially lowered dramatically with the increasing maleic anhydride graft ratio, but over 0.56% MAH content, DBTTs of blends did not drop further, while tensile strength and tensile modulus dropped slightly because of the decreased glass transition temperature (Tg) of nylon 11/POE blends, resulting from the increased compatibility between the two phases. The role of MAH graft ratio on the POE particle size and dispersion of POE on nylon 11 matrix was also studied.  相似文献   

9.
In this paper the sbrittle-ductile transition of polypropylene, high density polyethylene, and a styrene-butadiene-styrene triblock copolymer (PP/HDPE/SBS) ternary blends is investigated for fixed compositions and prepared under various conditions. The morphology of the SBS dispersed phase particles and impact strength of the PP ternary blends is closely related to the processing conditions. There is a sharp Brittle-Ductile transition for the ternary blends when interparticle distance T becomes less than the critical interparticle distance Tc. Both the impact strength in general and more specifically, Tc depend upon the toughness of the PP/HDPE composite matrix.  相似文献   

10.
A novel method for the preparation of a quaternary ammonium ionomer of styrene–butadiene–styrene triblock copolymer (SBS) was developed by a ring‐opening reaction of epoxidized SBS with triethylamine hydrochloride in the presence of a phase transfer catalyst. The optimum conditions were studied. The ionomer was characterized by quantitative analysis, IR spectroscopy, and 1H‐NMR spectroscopy. Its water absorbency, oil absorbency, dilute solution viscosity, and use as a compatibilizer for the blending of SBS and chlorosulfonated polyethylene (CSPE) were investigated. The results showed that, under optimum conditions, the epoxy groups can be completely converted to the quaternary ammonium groups. The IR spectrum did not exhibit the absorption peak for quaternary ammonium groups, whereas the 1H‐NMR spectrum and titration method demonstrated it. With increasing ionic group content, the water absorbency of the ionomer increased whereas its oil absorbency decreased. These indicated the amphiphilic character of the SBS ionomer. The dilute solution viscosity of the ionomer in toluene/methanol (9/1) solvent increased with increasing quaternary ammonium group content. The ionomer was used as a compatibilizer for the blends of SBS and CSPE. The addition of a small amount of the ionomer to the blend enhanced the mechanical properties of the blends: 2 wt % ionomer based on the blend increased the tensile strength and ultimate elongation of the blend nearly 2 times. The blends of equal parts SBS and CSPE behaved as oil‐resistant thermoplastic elastomers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1975–1980, 2006  相似文献   

11.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
In this study, ethylene/styrene interpolymer was used as a compatibilizer for the blends of polystyrene (PS) and high‐density polyethylene (HDPE). The mechanical properties including tensile and impact properties and morphology of the blends were investigated by means of uniaxial tension, instrumented falling‐weight impact measurements, and scanning electron microscopy. Tensile tests showed that the yield strength of the PS/HDPE/ESI blends decreases considerably with increasing HDPE content. However, the elongation at break of the blends tended to increase significantly with increasing HDPE content. The excellent tensile ductility of the HDPE‐rich blends resulted from shield yielding of the matrix. Izod and Charpy impact measurements indicated that the impact strength of the blends increases slowly with HDPE content up to 40 wt %; thereafter, it increases sharply with increasing HDPE content. The impact energy of the HDPE‐rich blends exceeded that of pure HDPE, implying that the HDPE polymer can be further toughened by the incorporation of brittle PS minor phase in the presence of ESI compatibilizer. The correlation between the impact property and morphology of the blends is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4001–4007, 2007  相似文献   

13.
In this work, the β‐nucleated isotactic polypropylene (iPP)/ ethylene‐octene copolymer (POE) blends demonstrated greatly enhanced impact toughness by adding traces of carbon nanotubes (CNTs) (only 0.05 wt%). When the POE content was 30 wt%, the impact strength of β‐nucleated iPP/POE blends with CNTs was as high as 51.7 kJ/m2, about 5.6 kJ/m2 higher than β‐nucleated iPP/POE blends, 15.2 kJ/m2 higher than CNTs‐filled iPP/POE blends, and almost 19 times of pure iPP sample. This significantly improved impact toughness was considered to be attributed to the shear yielding and multiple‐crazing, originating from the presence of abundant β‐crystals in the iPP matrix, the enhanced mobility of the molecular chains in the confined amorphous region of iPP lamellae and the homogenous distribution of POE dispersed phase with a small size, indicating the synergistic effect of CNTs, β‐nucleating agent and POE on the toughness of iPP. POLYM. ENG. SCI., 59:757–764, 2019. © 2018 Society of Plastics Engineers  相似文献   

14.
Ternary blends of polyoxymethylene (POM), polyolefin elastomer (POE), and glycidyl methacrylate grafted high density polyethylene (GMA‐g‐HDPE) with various component ratios were studied for their mechanical and thermal properties. The size of POE dispersed phase increased with increasing the elastomer content due to the observed agglomeration. The notched impact strength demonstrated a parabolic tendency with increasing the elastomer content and reached the peak value of 10.81 kJ/m2 when the elastomer addition was 7.5 wt%. The disappearance of epoxy functional groups in the POM/POE/GMA‐g‐HDPE blends indicated that GMA‐g‐HDPE reacted with the terminal hydroxyl groups of POM and formed a new graft copolymer. Higher thermal stability was observed in the modified POM. Both storage modulus and loss modulus decreased from dynamic mechanical analysis tests while the loss factor increased with increasing the elastomer content. GMA‐g‐HDPE showed good compatibility between the POM matrix and the POE dispersed phase due to the reactive compatibilization of the epoxy groups of GMA and the terminal hydroxyl groups of POM. A POM/POE blend without compatibilizer was researched for comparison, it was found that the properties of P‐7.5(POM/POE 92.5 wt%/7.5 wt%) were worse than those of the blend with the GMA‐g‐HDPE compatibilizer. POLYM. ENG. SCI., 57:1119–1126, 2017. © 2017 Society of Plastics Engineers  相似文献   

15.
In this study, the effects of the elastomer type—ethylene–propylene–diene monomer (EPDM), three kinds of ethylene vinyl acetate (EVA 9, EVA 18, and EVA 28, where the number is the vinyl acetate concentration), and styrene–butadiene–styrene—and content on the microstructure and mechanical and thermal properties of isotactic polypropylene (i‐PP) blends were investigated. Five different elastomer concentrations (3, 6, 9, 12, and 15 wt %) were added to i‐PP to produce polypropylene/elastomer blends. The yield and tensile strengths, elastic modulus, impact strength, hardness, melt flow index (MFI), and structural properties of the blends were investigated. The tensile and yield strengths, elastic modulus, and hardness decreased gradually, whereas the impact strength and MFI increased as the elastomer content increased. As a result, with respect to the impact strength, the most effective elastomers were EPDM with 15 wt % and EVA 28 with 15 wt % for higher impact strength values. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1445–1450, 2005  相似文献   

16.
PP/HDPE/SBS三元共混物的研究——形态结构与性能   总被引:2,自引:0,他引:2  
研究了PP/HDPE/SBS三元共混物的性能及形态结构特征。研究结果表明,PP三元共混物的冲击韧性除与SBS的含量密切相关外,还与HDPE的含量有关,HDPE起到了与SBS相似的增韧作用。由于HDPE的掺入,减少了SBS的含量,制成了一种力学性能均衡的超高韧性PP三元共混材料。形态结构的研究表明,共混物中,SBS呈颗粒状分布,另外SBS还与HDPE组成了具有包藏结构的复合粒子。  相似文献   

17.
To improve the impact toughness of poly(lactic acid) (PLA), four kinds of rubbery modifiers, including ground tyre rubber (GTR), styrene‐butadiene‐styrene block copolymer (SBS), ethylene‐α‐octene copolymer (EOC) and glycidyl methacrylate grafted EOC (mEOC), were introduced for fabricating the PLA blends. The morphological structures, mechanical properties, thermal stability and thermal decomposition kinetics of pristine PLA and the blends were investigated. Results showed that representative droplet‐matrix structures were observed in the PLA blends, of which the PLA/SBS blend presented the smallest domains while PLA/EOC case had the largest elastomeric particle size. Accordingly, the highest impact toughness and elongation at break were achieved by PLA/SBS blend, whereas the tensile strength and elastic modulus for the blends were all lower than that of pristine PLA. Though the incorporation of rubbery modifiers barely altered the peak temperature of melting, the degrees of crystallinity for blends were declined sharply. The results of thermo gravimetric analysis indicated thermal degradation process of PLA phase was accelerated by rubbery modifiers and evidenced by the relative higher mass conversion at peak temperature. The reaction order of PLA phase for blends calculated by Carrasco method exhibited similar values when compared with control sample. However, the values of activation energy were rather lower than that of pure PLA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43340.  相似文献   

18.
The morphology and mechanical properties of a styrene–ethylene/butylene–styrene triblock copolymer (SEBS) incorporated with high‐density polyethylene (HDPE) particles were investigated. The impact strength and tensile strength of the SEBS matrix obviously increased after the incorporation of the HDPE particles. The microstructure of the SEBS/HDPE blends was observed with scanning electron microscopy and polar optical microscopy, which illustrated that the SEBS/HDPE blends were phase‐separation systems. Dynamic mechanical thermal analysis was also employed to characterize the interaction between SEBS and HDPE. The relationship between the morphology and mechanical properties of the SEBS/HDPE blends was discussed, and the toughening mechanism of rigid organic particles was employed to explain the improvement in the mechanical properties of the SEBS/HDPE blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
国产聚丙烯的增韧改性研究   总被引:17,自引:0,他引:17  
本文采用共混的方法对PP进行增韧改性,分别用苯乙烯与丁二烯嵌段共聚物(SBS)、三元乙丙橡胶(EPDM)和乙烯与聚烯烃共聚物(POE)作为增韧剂与PP组成二元及三元共混体系,测试了各共混体系的力学性能,并确定最佳的增韧剂和具有较好的协同效应的共混体系,试验结果表明:POE为PP的最佳增韧剂,PP/EPDM/SBS三元共混体系具有较好的协同效应。  相似文献   

20.
A styrene–butadiene–styrene triblock copolymer (SBS) was grafted with polyoxyethylene via a ring‐opening reaction of an epoxidized styrene–butadiene– styrene triblock copolymer (ESBS) with monocarboxylic‐group‐terminated methoxypoly(ethylene glycol) (CMPEG). The latter was prepared through the esterification of methoxypoly(ethylene glycol) with maleic anhydride. The optimum conditions for the preparation of the graft copolymer were studied. The graft copolymer was characterized with Fourier transform infrared spectrophotometry. Its water absorbency, oil absorbency, emulsifying property, phase‐transfer catalysis property in the Williamson solid–liquid reaction, and use as a compatibilizer in the blending of SBS with oil‐resistant chlorohydrin rubber (CHR) were also studied. The optimum conditions were a CMPEG/epoxy group molar ratio of 1.5, an N,N‐dimethyl aniline/ESBS concentration of 5 wt %, and an ESBS concentration of 12–14 g/100 mL at 75–80°C for 10 h. The polyoxyethylene content could reach 0.27 mmol/g. The graft copolymer absorbed a certain amount of water, fairly resisted kerosene, and possessed good emulsifying and phase‐transfer catalysis properties, both of which were enhanced with increasing polyoxyethylene graft content. The graft copolymer could be used as a compatibilizer for a blend of SBS and CHR. A 3 wt % concentration of the graft copolymer based on a 50/50 blend could increase both the tensile strength and ultimate elongation of the blend about 1.7 times. The blend behaved like an oil‐resistant thermoplastic elastomer. Scanning electron microscopy demonstrated the improved compatibility of the two components by the graft copolymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号