首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文从标准、理论分析、性能测试、运行费用及节能等方面对R32喷气增焓空气源热泵系统进行分析,结果表明:增加闪蒸器可以使R32低温制热工况排气温度降低35.6℃;在GB/T18430.1—2007名义工况及低温、超低温工况下,系统制冷制热能力都有提高,且制热能力比制冷能力提高更多;R32喷气增焓系统低温制热能力和COP的衰减小于R410A喷气增焓和R410A普通系统,在-5℃、-12℃和-20℃环境温度工况下,R32喷气增焓机组制热能力与名义工况能力的比值(下简称为衰减率)要比R410A喷气增焓系统分别高4%,7%和9%;在-5℃和-12℃环境温度工况下,R32喷气增焓系统的制热能力衰减率要比R410A普通系统分别高14%和20%;R32喷气增焓系统替代常规供暖方式,全年运行费用可节省28.9%;在GB/T25127.1—2010名义制热工况(-12℃环境温度、41℃出水温度)下,R32喷气增焓系统比集中供暖方式节省标准煤30.4%。  相似文献   

2.
对喷气增焓及喷液冷却式空气源热泵进行了热力学分析,并在低环境温度下对其制热性能进行了数据测试及对比研究,结果表明,随着室外环境温度在10℃~30℃之间下降时,两款热泵耗电量都在逐渐增加,制热量逐渐降低,喷气增焓空气源热泵机组相较喷液冷却式空气源热泵机组的COP下降有变缓趋势,当室外环境温度为-5℃时,喷气增焓热泵的COP为3.03,而喷液冷却式热泵降至2.66;在-20℃时,喷气增焓式热泵COP为2.15,喷液冷却式热泵COP已降至1.88;喷气增焓空气源热泵比喷液冷却式热泵性能提高大概13%左右。喷气增焓空气源热泵机组在低温环境下效率更高。  相似文献   

3.
本文分析了目前低环境温度热泵用涡旋压缩机运行特性及技术要求,并对制冷剂喷液冷却和喷气增焓两种涡旋压缩机技术的特点进行了对比介绍。针对低环境温度热泵开发了两款R410A涡旋压缩机:PSH系列压缩机采用制冷剂喷液冷却技术控制压缩机排气温度,可以扩大低环境温度下的运行范围;PCH065压缩机采用制冷剂喷气增焓技术提高低环境温度工况制热量及制热性能,并通过中间排气技术提高部分负荷系统的制冷性能,内置温度保护器的应用提高了压缩机在高排气温度运行的可靠性。这些优点使得热泵系统可以在我国低环境温度区域推广使用。  相似文献   

4.
本文将中间补气涡旋式压缩机应用于地暖制热系统,以解决地暖制热系统在低温环境下制热性能不佳、机组运行不稳定等问题,并建立补气地暖样机实验系统,研究了在不同运行工况下中间补气地暖系统的压缩机排气温度、制热量、功耗及制热COP等参数,分析了中间补气地暖系统制热性能与常规热泵制热性能之间的关系。实验结果表明:当环境温度处于-20~7℃之间时,带中间补气系统的地暖机组的制热量相比于普通热泵平均提升约26.2%,制热COP平均提升约为8.7%,功耗仅平均增加约16%;当室外环境温度为-20℃时,压缩机排气温度降低了12℃。可见采用中间补气技术的地暖系统在低能耗的条件下更能满足低环境温度的需求。  相似文献   

5.
为了解决电动汽车空调系统冬季采暖问题和抑制冬季恶劣工况下压缩机排气温度过高状况,本文采用补气增焓技术,设计了电动汽车准双级压缩热泵空调系统,构建了电动汽车空调准双级涡旋式压缩机性能测试实验台。采用5种不同室外环境温度工况,分别测试了单级和准双级涡旋式压缩机。结果表明:压缩机的排气温度随环境温度的降低而升高。5种工况下,单级涡旋压缩机的排气温度均高于准双级涡旋压缩机的排气温度,尤其在环境温度为-7℃时,准双级涡旋压缩机的排气温度降低了10℃。与单级涡旋压缩机相比,在低温工况下,准双级涡旋压缩机的排气质量流量提高了12.9%~17.4%,系统制热量提高了7.3%~8.3%,制热性能系数COPh提高了7.6%~8.2%。  相似文献   

6.
提出一种带有平行流换热器的闪发器热泵系统,在高温工况下利用平行流换热器对系统的控制电路板进行冷却。通过标准焓差实验室对不同工况下系统的性能进行测试,结果表明:在制热工况下,系统的制热量、功耗和制热COP分别对应一个最佳中间压力;随着环境温度的升高,其制热COP逐渐增大,但与常规热泵系统相比,其增加的幅度逐渐减小;当室外环境温度高于7℃时,其COP反而比常规热泵系统低,由此可见,该系统在低温环境下具有更优的制热性能;在高温制冷工况下,采用平行流换热器冷却控制电路板,可以使压缩机频率降低的幅度减小,从而间接增加制冷量,但压缩机的不可逆损失增大,造成系统的功耗增加,制冷EER减小,排气温度上升。  相似文献   

7.
补气增焓与喷液冷却是低环境温度空气源热泵机组采用的2种主要的技术方案。本文分别采用这2种方案设计R410A低环境温度空气源热泵机组,并对二者的性能进行对比试验研究。结果表明:在制热名义工况下,2种机型的COP均在2.3以上,补气增焓型机组COP高于喷液冷却型机组约6%。变工况制热条件下,当环境温度高于7℃时,喷液冷却型机组制热量高于补气增焓型机组,在环境温度为21℃时,前者高出后者约8%;当环境温度在-10~7℃范围内时,二者制热量差异不明显;当环境温度低于-10℃时,补气增焓型机组制热量高于喷液冷却型机组。环境温度在-25~21℃范围内时,补气增焓型机组制热COP均高于喷液冷却型机组。  相似文献   

8.
在低环境温度工况下,传统空气源热泵存在制热量不足、制热性能系数(COP)低等问题,这导致其热舒适性差和运行经济性差,阻碍了空气源热泵技术在北方寒冷地区的应用。本文将变容积比三缸双级压缩补气增焓技术应用于家用空气源热泵,研究结果表明:该热泵的低温运行工况可低至-35℃;-15℃制热工况的COP可达到1.92;-30℃制热工况下,热泵出风口温度可达47℃。  相似文献   

9.
冬季我国北方室外环境蕴含大量天然冷源,热力学分析表明热泵工质过冷释放的热量可以在蒸发器的等温吸热过程中获得补偿。为了研究大气自然冷源对热泵制热性能的影响,增设室外过冷器,搭建利用自然冷源过冷的空气源热泵实验装置。实验结果表明:当室外环境温度大于0 ℃,冷凝温度小于45 ℃的条件下,自然冷源过冷对热泵制热量与制热COP影响均较小,系统制热量维持在6.22 ~ 6.70 kW,制热COP维持在3.03,压缩机排气温度维持在103 ℃以下;当室外环境温度小于 -10 ℃,冷凝温度大于50 ℃时,随过冷度的增加,压缩机功率增加、排气温度显著增高,系统制热量呈先缓慢增加后减小趋势,制热COP降至2.3。基于上述研究提出一种空气源热泵过冷融霜新型除霜方式,融霜同时不停止制热。  相似文献   

10.
贾庆磊  冯利伟  晏刚 《制冷学报》2015,(2):65-70+77
将带中间补气的单缸滚动转子式压缩机应用于空气源热泵系统,以解决低温工况下出现的制热量不足、能效偏低等问题。利用焓差室测试比较带中间补气的单缸滚动转子式压缩系统(单缸系统)与双缸滚动转子式压缩系统(双缸系统)、单级压缩系统在不同制热工况下的系统性能。实验结果表明:在室外温度高于-15℃时,单缸系统与单级压缩系统相比,其制热量增加幅度均大于12%,并随着室外温度的降低增加幅度逐渐增大;单缸系统的制热量与COP均大于双缸系统,其提升幅度的平均值分别为2.29%、1.94%;在室外温度低于-15℃时,单级压缩系统因排气温度过高无法正常工作,双缸系统的制热量与COP均大于单缸系统,其提升幅度的平均值分别为4.5%、9.42%;验证了单缸系统更适用于室外温度高于-15℃的工况,双缸系统更适用于室外温度低于-15℃的工况。  相似文献   

11.
在低温环境下传统的空气源热泵系统的制热能力大幅衰减,制热量将小到无法满足这些地区的冬季采暖需求,而且随着环境温度的降低,系统COP急剧下降,压缩机的压比越来越大,导致排气温度不断升高,长期运转必然会严重损坏压缩机,为了使热泵在低温环境下也能高效、可靠地运行,国内外工程技术界进行了大量的研究,将喷射增焓技术应用于压缩机中。该文针对旋转式压缩机喷气增焓技术,从国内外申请趋势分析及专利产出国分布等方面分析了该领域全球专利概况,并重点从主要技术分支及其申请量分布、各技术分支技术演进等方面分析了该领域技术分支及演进。  相似文献   

12.
本文提出热泵驱动热管式辐射供热装置的循环原理,基于1 HP压缩机研制出一套样机,并在焓差室测试了样机在室内温度为18~22℃,室外温度为-15~0℃的工况下的运行特性。结果表明:热管散热器启动迅速、表面温度分布均匀,热管工质的最佳充注比率为0.1,当室内温度为22℃,室外温度为-15~0℃时,制热COP最高可达4.1。  相似文献   

13.
针对纯电动公交车设计了一套热泵型空调系统,并对其运行特性进行了实验研究,分析了环境温度、压缩机转速和室内外风速对制冷/制热量、COP/EER和排气温度的影响。研究结果表明,设计的热泵型空调系统具有较好的制冷/制热性能,在制冷工况转速为2700r/min时COP最高,而制热工况下EER随转速增加而减小。在制热工况下,EER随室外风机转速增加而降低,因此较低的室外风机转速更有利于系统的节能。  相似文献   

14.
杨忠诚  苏林  于荣  方奕栋  李康  穆文杰 《制冷学报》2021,42(1):53-59+81
为研究低温时电动汽车热泵空调系统的制热性能,本文通过搭建空气源热泵空调系统实验台,实验研究了电动汽车热泵空调系统在环境温度为-10~0℃的低温工况下的制热性能,分析了压缩机转速(2000~5000 r/min)、HVAC总成进风量(300~400 m^3/h)和环境温度对该热泵系统性能的影响,最后通过推导公式,估算电动汽车在使用空调系统后的续航里程。实验结果表明:随着压缩机转速的增加,压缩机排气温度、排气压力和系统制热量均增加,而COP下降;当保持压缩机转速和环境温度不变时,HVAC总成进风量从300 m^3/h增至400 m^3/h,制热量增加约13.3%~26.0%,COP增加约0.03~0.80;在其他条件不变时,当环境温度从-10℃升至0℃,热泵空调系统的制热量增加约60.9%~71.0%,COP增加约0.51~0.63;通过公式进行计算,当环境温度为-10~0℃时,在达到相同制热量条件下,热泵空调系统可在PTC加热器的基础上使续航里程提高13.5%~20.8%。  相似文献   

15.
为了研究制冷剂充注量和环境温度对电动汽车二次回路热泵空调系统的影响规律,笔者设计并搭建了带有二次回路的热泵空调系统试验台。针对不同转速下,制冷量/制热量、COP和压缩机排气温度等参数随充注量及环境温度的变化趋势进行了试验研究,并确定标准制冷和制热工况的最佳充注量。结果表明:随着充注量的增加,蒸发器出口过热度和排气温度逐渐降低,而排气压力逐渐升高;制冷量/制热量和COP随充注量的增加而增大,并在最佳充注量处达到峰值,之后保持小幅变化。综合考虑,制热和制冷模式下系统最佳充注量分别为650 g和1 100 g。基于最佳充注量、压缩机转速为2 000 r/min时,制热模式环境温度由0℃升至12℃,制热量增加48.4%,COPh升高8.3%;制冷环境温度由27℃升高至43℃时,制冷量和COP分别降低12.3%和44.4%。  相似文献   

16.
将带中间补气的滚动转子式压缩机应用于空气源热泵系统,不仅可解决常规系统制热工况下制热量不足的问题,而且可改善制冷工况系统性能,进一步提升系统APF值。首先介绍中间补气的滚动转子式压缩系统(中间补气系统)的工作原理,然后利用标准焓差室测试中间补气系统与单级压缩系统在不同制热工况、APF基本工况下的系统性能。试验结果表明:中间补气系统可在室外温度低于-15℃时正常安全运行,在室外温度高于-15℃时,制热量相对于单级压缩系统有较大的提高,其提高幅度均大于12%;在额定制冷和中间制冷工况下,中间补气系统开启补气时,相对于不开启补气时,其EER值分别提高8.05%和13.67%,相对于单级压缩系统,其运行频率稍有降低,EER值分别提高2.05%和0.6%;在额定制热和额定低温制热工况下,中间补气系统相对于单级压缩系统制热量与功率均有较大提高,而系统COP相差不大;在中间制热工况下,中间补气系统相对于单级压缩系统,其COP可提高7.88%中间补气系统的APF值为3.85,相对于单级压缩系统的3.68,提高幅度达4.62%。  相似文献   

17.
通过改变压缩机频率,实现低高压压缩机理论输气量不同配比,对变容量双级压缩热泵系统进行实验研究,分析系统中间压力、中间温度和制冷剂循环量等参数随低高压压缩机理论输气量比的变化规律。实验结果表明:该系统在较低蒸发温度时,通过增大低高压压缩机理论输气量比可有效提高系统制热量,但系统制热COP改善较小;随蒸发温度的降低,系统制热COP最优值所对应的低高压压缩机理论输气量比将遵循增大的规律。同时指出该系统在蒸发温度0℃,冷凝温度40℃,低高压压缩机理论输气量比为2.82时,系统中间压力已接近冷凝压力,系统失去中间喷射的补气增焓效果。该研究为双级压缩系统性能的研究及其优化设计提供了有力的参考。  相似文献   

18.
电动汽车热泵空调系统冬季采暖性能实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过实验研究了电动汽车三换热器热泵空调系统在冬季运行时的采暖性能,研究分析了压缩机在不同转速(2 000~5 000 r/min)下,室内外环境温度和相对湿度对系统内压缩机排气特性、汽车HVAC总成出风温度和COP等系统性能参数的影响。结果表明:较高的压缩机转速使出风温度和制热量明显上升,但系统COP有所降低;当保持压缩机转速不变时,环境温度每升高5℃时,制热量升高9%~22%,出风温度上升6~9℃,COP上升7%~11%;室外相对湿度由40%增至80%时,制热量增加了15%~20%,出风温度上升2~3℃,COP上升6%~9%。  相似文献   

19.
张小艳  夏湘 《制冷学报》2018,39(6):24-31
本文以R417A为工质,在冷凝器不同进水温度、不同进水体积流量时,测试了空气源热泵热水器的运行性能及螺旋套管冷凝器的换热特性,为制冷空调及热泵系统的工质替代提供参考。实验工况为:冷凝器入口水温20~55℃,冷凝器进水体积流量为0.6~1.0 m~3/h,环境温度分别为15、29℃。结果表明:冷凝器进水体积流量一定时,随入口水温的升高,冷凝器总换热量、总传热系数减小,压缩机排气压力、输入功率增大,热泵热水器制热量、制热性能系数COP下降。冷凝器入口水温一定时,随进水体积流量的增加,冷凝器总换热量、总传热系数增大,压缩机排气压力、输入功率减小,热泵热水器制热量、COP增大。实验工况范围内,与环境温度为15℃相比,环境温度为29℃时的冷凝器总换热量、总传热系数、排气压力、吸气压力、输入功率、制热量、COP均较高。  相似文献   

20.
开发CO_2跨临界汽车热泵,是解决R134a汽车热泵在低温环境下制热量不足、无法正常工作问题的有效措施。本文理论分析了影响CO_2汽车热泵性能的关键因素,在最低为-20℃的环境温度下实验研究了CO_2汽车热泵的性能。结果表明:开发的CO_2汽车热泵系统在低温环境下稳定运行,具有较好的制热性能;在相同压缩机转速条件下,室内进风温度对制热COP(COP_h)影响更大,室外环境温度对制热量影响更大;在-20℃环境冷启动工况下COP_h可达到3.15、制热量为3.6 k W;进风(Tg,a,in)和出风(Tg,a,out)温度分别为20℃和40℃时,COP_h最低为1.72。因此,与R134a相比,CO_2车用热泵系统的低温制热性能有显著的优势,该系统在电动汽车上具有较好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号