首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文重点研究引起圆柱形阳极层霍尔推力器的内磁极刻蚀的入射离子能量和入射角分布,仿真中考虑入射离子能量和入射角分布大小的变化,进而得到相应的刻蚀速率。由仿真结果可知,放电电压400 V,阳极表面磁场强度175×10^(-4)T,中心最大刻蚀速率为3×10^(-9)m/s。磁场提高到205×10^(-9)T时,中心附近刻蚀速率增加到原来的1.3倍左右,边沿处的刻蚀速率基本相同。在175×10^(-9)T的磁场强度时,把放电电压从400提高到600 V时,中心附近的刻蚀速率从3×10^(-9)提高到12.1×10^(-9)m/s,刻蚀速率增加了4倍多。此仿真结果与150 h的实验结果一致。此研究方法和结果有助于圆柱形阳极层霍尔推力器的设计和寿命评估工作。  相似文献   

2.
溅射对圆柱形阳极层霍尔推进器的稳定运行和寿命具有不可忽视的影响。为了研究D-80空心内磁极圆柱形阳极层霍尔推进器的磁极溅射程度,建立了D-80圆柱形阳极层霍尔推进器的三维全粒子PIC/MCC模型,利用VORPAL仿真软件对D-80圆柱形阳极层霍尔推进器放电-溅射过程进行了仿真,得到了离子轰击到内、外磁极上的入射能量,入射角度的概率分布,分析了溅射粒子在不同放电功率、磁场和气压下的变化规律。仿真结果表明:离子溅射全部发生在内、外磁极的表面上,轰击内磁极的离子能量平均值和入射角都小于轰击外磁极的离子入射能量和入射角,但内磁极的内、外径表面上溅射程度最严重,与实验中磁极溅射形貌一致;高放电电压和高气压下,溅射程度更严重,并且与实验结果一致。  相似文献   

3.
溅射对圆柱形阳极层霍尔推进器的稳定运行和寿命具有不可忽视的影响。为了研究D-80空心内磁极圆柱形阳极层霍尔推进器的磁极溅射程度,建立了D-80圆柱形阳极层霍尔推进器的三维全粒子PIC/MCC模型,利用VORPAL仿真软件对D-80圆柱形阳极层霍尔推进器放电-溅射过程进行了仿真,得到了离子轰击到内、外磁极上的入射能量,入射角度的概率分布,分析了溅射粒子在不同放电功率、磁场和气压下的变化规律。仿真结果表明:离子溅射全部发生在内、外磁极的表面上,轰击内磁极的离子能量平均值和入射角都小于轰击外磁极的离子入射能量和入射角,但内磁极的内、外径表面上溅射程度最严重,与实验中磁极溅射形貌一致;高放电电压和高气压下,溅射程度更严重,并且与实验结果一致。  相似文献   

4.
《真空》2019,(4)
由于圆柱形阳极层霍尔推力器的阳极分段形式会影响到推力器内电势的分布,进而影响到推力器内放电等离子体中电子的运动形式和工质的电离率。本文主要从实验和仿真模拟两个方面来分析不同的阳极分段形式(单段阳极、两分段阳极、三分段阳极和四分段阳极)在同样的工作条件下,对离子束流分布的影响。通过结果分析来指导阳极的结构设计。由结果可知两分段阳极时的离子束电流和离子束能量较高。在束流直径35mm内的四种阳极分段形式下的束流电流分布有一定的差别,其他位置基本相同。900V的放电电压下,两分段阳极下的束流能量分布比三分段阳极的整体上均高32e V左右,比单阳极和四分段阳极高20e V左右(除去中轴线和边沿附近)。此研究结果对圆柱形阳极层霍尔推力器的阳极设计提供了可靠的理论依据。  相似文献   

5.
电磁场对阳极层霍尔推力器电离效率的影响   总被引:1,自引:0,他引:1  
推力器的电离效率直接影响到推力器的功率、比冲以及推力等重要工作参数,本文主要利用PIC模拟得到阳极层霍尔推力器放电等离子体的平均电子能量以及电子、离子数比率随电磁场变化规律,由此分析电磁场对推力器电离效率的影响情况。由结果可知,平均电子能量在放电电压750 V之前逐渐增加,而后又降低;磁感应强度B小于170×10~(-4) T时,平均电子能量随磁场的增加而增加,之后随磁场的增加而降低。在放电等离子体中离子的比率随着放电电压的增加而增加,在800 V之后略有降低,电子比率的变化和离子比率的变化是个相反的过程。随着磁场的增加离子数比率基本上是一个降低趋势,而电子比率是逐渐增加的。通过平均电子能量、电子和离子比率与E/B之间的关系,得到最佳E/B比值大约为1.6×10~6 m/s。  相似文献   

6.
利用二维磁流体动力学模型,对我们自行设计的圆柱形霍尔等离子体加速器通道内的放电等离子体进行数值模拟计算,得到了通道内的电子密度、离子密度等分布.从计算的结果看出电子密度和离子密度主要集中在阳极附近,在加速器内通道的上游离子的数密度很快的增加到最大值4 × 1015/m3,在加速器内通道的上游电子的数密度7×1013/m3,说明离化主要发生在阳极附近,霍尔等离子体加速器出口处离子流密度的分布是双峰分布,电势梯度在阳极附近比较大.通过和PIC方法计算的结果还有试验比较看出大体具有一致性.  相似文献   

7.
离子推力器放电室内永久磁铁产生的磁场大小及分布对提高放电室放电效率和约束等离子体起着非常重要的作用。利用离子推力器性能模型并结合试验测得的束流离子生产成本,分析放电室内磁感强度大小对LIPS-200离子推力器放电室性能的影响。数值计算结果显示永久磁铁厚度增加1mm,放电室内的磁感强度从原来的5.0×10^-3~3.0×10^-2T增加至1.0×10^-2-5.0×10^-2T。理论分析结果显示磁感强度增加50%,原初电子平均约束时间增加49.9%、原初电子和中性气体之间的碰撞概率增加6.9%、离子损耗减小64%、束流离子生产成本降低18.1%、推进剂利用率提高7.4%。放电损耗、推进剂利用率与磁感强度大小呈线性关系。该研究能够为今后离子推力器设计提供一定的参考。  相似文献   

8.
为了研究大面积等离子体片的分层特性,利用脉冲磁约束线形空心阴极放电装置,在150 Pa氦气中产生了持续时间为200μs、面积为60 cm×60 cm的大面积等离子体片。采用快帧法和旋转空心阴极法利用郎缪尔探针首次获得了等离子体片分层时厚度方向电子密度分布及其演化构成的二维分布图;基于获得的二维分布图,研究了分层等离子体片厚度方向电子密度的分布特征与磁场强度和放电电流的关系。实验发现,等离子体片分层时厚度方向电子密度呈现双峰曲线分布特征;当放电电流为2 A,磁场强度为1.5×10~(-2),2.25×10~(-2),3×10~(-2)T时,双峰间距分别为0,3.2,8.4 mm;当磁场为3×10~(-2)T,电流为1,2,3,4 A时,双峰间距分别为8.6,8.2,6.8,5 mm。结果表明:分层等离子体密度峰值间距随着磁场的增强和放电电流的降低而增大。  相似文献   

9.
在CF4/Ar的感应耦合等离子体中,用"法拉第筒"式的方法研究了SiO2刻蚀速率与不同离子入射角度之间的关系.在所施加的-20~300V射频偏压范围内,SiO2基片的归一化刻蚀速率(NER)呈现两种情况,当偏压值<100V时,归一化刻蚀速率的大小与基片倾斜角度θ符合余弦曲线规律;当偏压值>100V时,θ在15°~60°范围内,归一化刻蚀速率的大小在大于相应的余弦值,θ>60°时归一化刻蚀速率快速下降,在90°附近SiO2表面出现聚合物沉积.θ<60°时,SiO2的表面刻蚀主要决定于入射离子与基片表面间的能量转换,转换能量的大小深刻地影响着SiO2的刻蚀速率,同时也影响形成于基片表面的碳氟聚合物的去除速率.  相似文献   

10.
本文提出一种在轴向发射式电离机构基础上发展成的热磁控电离真空规。根据实验结果,它较Lafferty热磁控规软X射线光电流与阳极电流之比(?)二个数量级(I_x/I_a=2×10~(-9))。其金属电极面积远较Lafferty规为小,除气容易。当压强低于1.33×10~(-6)帕和发射电流为1×10~(-6)安和1×10~(-7)安时,其灵敏度分别为7.5×10~(-4)和3.6×10~(-4)安/帕,相应的光电流本底为5.33×10~(13)帕和1.06×10~(-13)帕。它在无磁场时线性测量上限为1.33×10~(-2)帕。  相似文献   

11.
<正>本文参考IEC62464-1:2007《医用磁共振成像设备主要图像质量参数的测定》,简单介绍四肢骨关节磁共振成像系统的计量校准方法。一、校准用标准器磁场强度计,测量范围:0~3.4T,最小分度值为1×10~(-6)T。四肢骨关节磁共振专用评价模体,模体由聚甲基丙烯酸甲酯(PMMA)材料制成,外形尺寸符合四肢骨关节磁共振线圈的要求,为圆柱形,模体直径10cm,高15cm。模体包含均匀性插件、空间分辨力插件、空  相似文献   

12.
徐云泽  黄一  盈亮  王晓娜  杨飞 《材料工程》2016,(10):100-108
通过电化学阻抗谱和动电位扫描法研究X65管线钢在含氧氯化钠溶液中沉积物对电化学参数的影响。采用电阻法(ER)结合零电阻电流计(ZRA)研究X65钢在沉积物覆盖下的电偶腐蚀行为与不同浓度有机膦缓蚀剂的作用效果。结果表明:X65钢在SiO_2沉积物覆盖时腐蚀电位负移,腐蚀速率降低。当有沉积物覆盖与无沉积物覆盖的电偶试片相连时,X65钢在沉积物下发生阳极极化,阳极电偶电流密度在18h内由120μA/cm~2衰减到50μA/cm~2并保持稳定。依次加入5×10~(-5),8×10~(-5)和3×10~(-4)浓度的PBTCA后,电偶电流在最高升至1300μA/cm~2后逐渐下降并稳定在610μA/cm~2附近,沉积物下X65钢腐蚀速率达到6.11mm/a,PBTCA加速了X65钢在含氧溶液中沉积物下的腐蚀。通过对试片表面进行观察,沉积物下X65钢表面发生了严重的局部腐蚀。  相似文献   

13.
至今,溅射离子泵的抽速用半经验公式S=K(I/P)表示,其常数K由实验确定。本文沿用Schuurman的磁约束气体放电理论,结合Sigmund援引Lindhard的原子碰撞公式所建立的溅射理论,并根据Langmuir的吸附理论,尝试从理论上求得二极型离子泵室温下对氮气抽速公式中常数X的表达式为;K=4.9×10~(-3)cfU_a~(1/4)(g 2-(g~2 4g)~(1/g~(2 4g)))。其中,常数c与泵的结构有关;函数f取决于压强;U_a为阳极电压;g=2.45×10~(-3)cfU_a~(1/4)I/PA。而A为阳极内表面面积。此关系式与实验结果比较相符。  相似文献   

14.
采用两步法制配了Co-H_2O纳米流体,研究了在不同磁场强度下的纳米流体光热转换特性以及直接吸收式太阳能集热器的集热效率。实验结果表明:磁场可强化Co-H_2O纳米流体的光吸收性能,且最佳磁场强度为3×10~(-3)T。在3×10~(-3)T磁场强度的作用下:质量分数为0.1%、0.04%Co-H_2O纳米流体,相对于去离子水其最高温度分别提升了42.86%和39.5%,质量分数为0.1%Co-H_2O纳米流体,相对于去离子水和未加磁场时最大集热效率分别提高了51.70%和13.24%。上述结果表明磁场在磁性纳米流体光热转换特性方面具有强化促进作用。  相似文献   

15.
通过高温拉伸实验研究TC18钛合金在温度为720~950℃,初始应变速率为6.7×10~(-5)~3.3×10~(-1)s~(-1)时的超塑性拉伸行为和变形机制。结果表明:TC18钛合金在最佳超塑性变形条件下(890℃,3.3×10~(-4)s~(-1)),最大伸长率为470%,峰值应力为17.93MPa,晶粒大小均匀。在相变点Tβ(872℃)以下拉伸,伸长率先升高后下降,在温度为830℃,初始应变速率为3.3×10~(-4)s~(-1)时取得极大值373%,峰值应力为31.45MPa。TC18钛合金在两相区的超塑性变形机制为晶粒转动与晶界滑移,变形协调机制为晶内位错滑移与攀移;在单相区的超塑性变形机制为晶内位错运动,变形协调机制为动态回复和动态再结晶。  相似文献   

16.
针对标准单晶硅球直径精密测量的需要,本文在介绍标准硅球直径测量系统原理并分析其光路特点的基础上,根据建立的数学模型,对激光束斜入射标准板时产生的椭圆干涉图像进行了分析,并对不同入射角度时干涉环中心点带来的直径测量误差进行了研究.分析结果显示,在给定的实验条件下,当入射角为10~(-3) rad时,误差已达6.6nm.提出了一种精确调整光束垂直入射平板的方法,实验结果表明,此方法能够使光束入射角的调整优于10~(-5)rad,满足系统测量的要求.  相似文献   

17.
Ni-YSZ作为固体氧化物燃料电池(SOFCs)的传统阳极具有良好的催化性能,但存在碳沉积、抗氧化还原能力差及硫毒化等问题,因此钙钛矿型材料以其良好的催化活性及耐H_2S毒化能力而成为研究热点。为此,本工作开发出了一种新型的Nb掺杂Fe基钙钛矿阳极材料La_(0.9)Ca_(0.1)Fe_(0.9)Nb_(0.1)O_(3-δ)。Fe位引入Nb显著地提高了材料在高温还原气氛中的结构稳定性,而对材料的热膨胀行为影响很小,掺杂前后材料的热膨胀系数分别为11.67×10~(-6)K~(-1)和11.57×10~(-6)K~(-1)。掺入Nb提高了阳极材料在还原气氛中的电导率,该材料在800℃时氢气中的电导率为1.95 S/cm。测试结果表明,La_(0.9)Ca_(0.1)Fe_(0.9)Nb_(0.1)O)(3-δ)阳极在H_2和CO中均表现出优异的放电性能,在800℃时放电功率分别达到539和491 m W/cm~2,电池在CO中放电200 h性能无衰减,显示出很好的长期稳定性。研究表明La_(0.9)Ca_(0.1)Fe_(0.9)Nb_(0.1)O_(3-δ)是一种极具应用前景的新型钙钛矿阳极材料。  相似文献   

18.
研究了Nd(3+)LiBi(MoO_4)_2晶体的生长、热学与光谱性能.用提拉法生长出尺寸为φ15mm×25mm Nd~(3+):LiBi(MoO_4)_2晶体.在330K时该晶体的比热容为0.32 J/(g·K).热膨胀实验结果显示该晶体沿c和a轴方向的热膨胀系数分别为2.767×10~(-5)/K和1.521×10~(-5)/K.在806 nm附近σ-和π-偏振谱带的最大吸收截面分别为5.04×10~(-20)cm~2和8.35×10~(-20)cm~2,半高宽为15 nm.σ-偏振1062nm和π-偏振1068 nm处的发射截面分别为1.325×10~(-19)cm~2和1.937×10~(-19)cm~2.应用Judd-Ofelt理论,获得了一些光谱参数.振子强度参数为Ω_2=25.40×10~(-20)cm~2,Ω_4=7.79×10~(-20)cm~2,Ω_6=6.37×10~(-20) cm~2测量获得的荧光寿命和计算辐射寿命分别为128μs和198μs.量子效率为64.64%.  相似文献   

19.
为了抑制铝-空气电池阳极的自腐蚀速率、提高其放电性能,选用6061铝合金作为阳极材料,研究了单独添加和复合添加聚丙烯酸钠(PAAS)和氧化锌(ZnO)对铝合金在4 mol/L NaOH溶液中自腐蚀及放电性能的影响。结果表明:PAAS/ZnO复合缓蚀剂的缓蚀效果强于单一缓蚀剂。复合缓蚀剂在促进阳极活化的同时,在铝阳极表面形成了更加稳定的复合保护膜,有效减缓了阳极的析氢自腐蚀,提高了阳极利用率。在NaOH+PAAS+ZnO电解液体系中,6061铝合金的溶解主要由电荷在腐蚀产物或锌盐沉积层中的扩散控制。加入复合缓蚀剂后,6061铝合金的自腐蚀速率由0.496 4 mg/(cm2·min)降至0.275 0 mg/(cm2·min),缓蚀效率达到44.6%,同时平均放电电压由-1.381 V负移至-1.681 V,阳极利用率提高了13.5%,铝-空气电池的放电性能得到明显改善。  相似文献   

20.
采用未经使用和经长时间使用后的新旧掺铝氧化锌(AZO)圆形平面陶瓷靶,直流磁控溅射制备AZO薄膜,基片分别正对靶材水平放置和立在屏蔽罩旁竖直放置,并通过X射线衍射仪、霍尔效应测试系统、光学椭偏仪等设备分析其结构和光电性能,系统地研究靶材刻蚀对磁控溅射制备AZO薄膜性能空间分布的影响。研究表明,氧负离子是造成靶材刻蚀导致薄膜性能空间差异的主要原因,对于水平放置径向分布的AZO薄膜,采用新靶制备时,靶材刻蚀位置处,氧负离子对薄膜损伤作用最大,(002)晶面间距增大,电学性能最差,而在正对靶中心及其他位置处电学性能较佳,随着靶材刻蚀的加深,氧负离子对正对靶中心位置处的薄膜损伤作用最大,结晶性能和电学性能最差;而对于竖直放置纵向分布的AZO薄膜,由于受氧负离子作用弱,采用新旧靶制备的薄膜性能分布规律相似,薄膜电学和结晶性能较水平放置均有所提升,某些位置处电阻率可达(7~8)×10~(-4)Ω·cm,但可见光透过率有所下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号