首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
本文提出采用非共沸工质的机械过冷跨临界CO2热泵供暖系统,并建立系统热力学模型,与采用纯质的机械过冷跨临界CO2热泵系统进行对比。结果表明:在环境温度为-12 ℃、用户供回水温度为65/40 ℃条件下,采用大温度滑移非共沸工质R1234ze(E)/R601(60/40)时,系统COP高达2.45,相对采用纯质最高提升13.82%。采用非共沸工质可有效降低系统排气压力并获得较大过冷度,减小节流不可逆损失。使用R290/R601(70/30)时,最优排气压力可降低27.85%。非共沸工质的使用可有效改善过冷过程的温度匹配,使用R1234ze(E)/R601(60/40)时系统?效率相对纯质最高提升14.09%。较大的温度滑移及合理的温焓曲线凹凸性是机械过冷CO2热泵系统非共沸工质选取的两个重要原则,推荐选用R1234ze(E)/R601(60/40)。  相似文献   

2.
机械过冷CO_2跨临界制冷循环性能理论分析   总被引:2,自引:0,他引:2       下载免费PDF全文
采用蒸气压缩制冷循环(辅助循环)对CO_2跨临界制冷循环气体冷却器出口的CO_2流体进行冷却,可减小节流不可逆损失,提高循环性能。本文对机械过冷CO_2跨临界制冷循环进行热力学循环分析,结果表明:当在最优排气压力和最优过冷度两个参数条件下,循环存在最大COP。环境温度越高、蒸发温度越低,采用机械过冷方法使循环性能提升越显著,相对传统CO_2制冷循环,通过辅助循环可显著提高循环COP,降低CO_2排气压力和温度。相对CO_2压缩机,辅助循环压缩机的功耗较少。分析了辅助循环中采用11种不同制冷剂的性能,可得除R41外,其它10种工质对循环整体COP的提升程度差异不明显。综上所述,机械过冷CO_2跨临界制冷循环更适用于环境温度较高、蒸发温度较低的场合。  相似文献   

3.
在设定工况条件下,采用3组CO2非共沸混合工质(R744/R22、R744/R1270、R744/R600a).对制冷系统进行了热力学理论分析和计算.研究了系统制冷量、压缩机功耗、制冷COP,和冷凝压力随CO2质量配比的变化关系.结果表明:在相同工况下,R744/R600a的冷凝压力最低,比R744/R22平均低22.9%,比R744/R1270平均低18.8%;R744/R1270具有较好的综合性能.  相似文献   

4.
以非共沸混合工质两相区的等温泄漏模型为基础,分析自复叠循环装置中各部件的泄漏对工质组分的影响,以天然工质R600a/CO2自复叠低温冷冻箱为例,研究不同泄漏点和不同泄漏率的泄漏特性。结果表明:当工质泄漏时,混合工质组分和循环性能均发生变化,在蒸发器出口处的泄漏对循环性能影响最大;当泄漏引起循环工质组分发生较大变化时,压缩机变容量和变压力比调节能力明显降低,此时系统不能满足设计工况的要求,工作性能变差。  相似文献   

5.
采用辅助的蒸气压缩循环进行过冷,可改善传统跨临界CO_2热泵系统用于冬季供暖性能。本文通过构建机械过冷跨临界CO_2热泵系统的热力模型,分析了机械过冷跨临界CO_2热泵系统供暖工况下的运行特性,结果表明:机械过冷CO_2热泵系统存在最大COP,对应最优排气压力和过冷度,标准工况下比常规CO_2系统能效提高15.9%。该系统可有效解决常规CO_2热泵回水温度过高导致COP迅速衰减的问题,当回水温度由40℃升至50℃时,常规系统COP下降16.9%,而机械过冷热泵系统COP仅下降8.4%。通过改进可有效降低CO_2压缩机的排气压力和温度,且供水温度越低排气压力降低效果越显著。机械过冷循环工质的选取会影响系统整体性能,选取的11种过冷循环工质中能效最高的为R717,最低的为R1234yf。在低环境温度工况下性能的提升更加明显,通过配置小型常规工质蒸气压缩循环即可实现CO_2热泵系统性能显著改进,经济性优势明显。  相似文献   

6.
系统介绍了自复叠制冷循环的工作原理、发展和主要研究方向,对几种典型的自复叠制冷系统进行了分析比较,介绍了一种带有精馏装置的新型自复叠制冷系统,最后提出了自复叠制冷系统设计需要考虑的一些关键问题。  相似文献   

7.
非共沸混合工质泄漏拓展模型的理论分析   总被引:2,自引:0,他引:2  
非共沸混合工质泄漏拓展模型的理论分析顾惠军高志明马一太(天津大学热能系,天津300072)NewTheoreticalModelontheLeakageofRefrigerantMixturesinaTankAbstractThereasonwhyR...  相似文献   

8.
陈然  刘强  蒙冬玉 《发电技术》2020,41(2):190-197
有机朗肯循环(organic Rankine cycle,ORC)是利用中低温地热能(< 150℃)发电的主要途径,在实际运行中,非共沸工质往往会冷凝至过冷状态。分析了冷凝过冷度对非共沸工质ORC热力性能的影响,建立了ORC、内回热(internal heat exchanger,IHE)ORC的热力学模型,以净输出功最大为目标函数优化了工质的蒸发压力,并开展了系统的㶲分析。结果表明:过冷度影响了工质与冷源换热流体间的温度匹配特性,受夹点温差的限制,随着过冷度的增加,工质的冷凝压力上升;过冷度亦改变了预热器和蒸发器的热量分摊,随着过冷度的增加,最佳蒸发压力亦上升。混合工质异丁烷/异戊烷的质量配比为0.4:0.6时,净输出功受过冷度的影响最大,当过冷度为2℃时,净输出功下降了4.36%。IHE回收膨胀机排汽的余热,提高了预热器入口温度,可提高过冷ORC系统净输出功0.55%。过冷度增大了冷凝器的㶲损失;采用内回热冷凝器的㶲损失降低了24.7%。  相似文献   

9.
计算及实验验证表明由R2 90、R1 5 2a、R6 0 0a组成的混合物具有较大的单位质量制冷量和单位质量输出功 ,是逆向布莱顿循环较理想的制冷工质。通过改变各组分的配比进行理论计算和实验研究发现 ,R2 90的摩尔比范围为 0 3~ 0 5、R1 5 2a为 0 0 8~ 0 2 7、R6 0 0a为 0 4~ 0 5时是COP (能效比 )、单位容积制冷量、排气温度、单位质量输出功这四者的综合最优区域  相似文献   

10.
11.
CO2制冷剂及其跨临界循环系统的开发与研究   总被引:3,自引:0,他引:3  
从CO2制冷剂的研究背景出发,通过对其作为制冷剂的历史回顾,主要介绍了CO2制冷剂再开发的目的、特点以及应用和研究方向;对国内在该领域的开发与研究进行了归纳和总结,指出了CO2跨临界循环系统今后的研究和发展方向.  相似文献   

12.
本文建立了两种控制器(单通道最优控制器(SCOC)和多变量线性二次高斯控制器(LQG))以改善跨临界CO2引射制冷系统的运行效率。首先建立了SCOC,通过在线调节喷嘴喉部面积,搜索系统最优的气冷器压力;其次针对SCOC作用下制冷量不可控的缺点,设计了LQG以实现系统制冷量可调。将两种控制器分别应用于实验系统中,结果表明:SCOC能够驱使系统不断接近给系统的最优气冷器压力,给定工况下获得最大制热系数COPh为3.15,但导致系统制冷量的不可控。在LQG的作用下,气冷器压力、系统制冷量得到独立控制,显示了很好的参数跟随性,然而LQG无法保证系统的稳态运行效率。研究指出两种控制器各有优缺点,若实现满足系统负荷需求的同时保持系统最高的运行效率,需要设计结合两种算法特点的新型控制器。  相似文献   

13.
CO2是零ODP、低GWP的天然制冷剂,在冷库制冷系统中应用前景广阔。本文针对用于低温冷库的两级节流中间完全冷却CO2跨临界双级压缩制冷循环(DTCC循环)建立数学模型,通过计算不同工况,分析蒸发温度、压缩机等熵效率、气冷器出口温度、排气压力以及回热循环方式对DTCC循环制冷系数的影响规律;给出DTCC循环的最优排气压力和最佳中间压力的计算式。研究表明:在蒸发温度-30~10 ℃、气冷器出口温度30~45 ℃范围内,DTCC循环的最优排气压力约比相同工况下的单级跨临界制冷循环的最优排气压力低0.3 MPa;低压级排气采用预冷气冷器、在高压级气冷器出口设置回热器均可有效改善DTCC循环的制冷系数。  相似文献   

14.
给出了R134a的制冷理论循环性能计算资料,公式及计算结果,给出了压力比,单位制冷量及热力性能系数对蒸发温度和冷凝温度的关系曲线,并进行了分析,可供设计和研究采用这种工质的制冷设备之用。  相似文献   

15.
对跨临界CO2两相流引射制冷系统性能进行了实验,分析了工况及引射器几何参数对系统性能的影响,结果表明:在实验工况范围内,跨临界CO2两相流引射制冷系统制冷量和COP随气体冷却器压力的升高而升高,随气体冷却器出口温度的升高而降低。对于使用不同喉部直径喷嘴的系统,在相同工况下,引射器喷嘴喉部直径较大的系统的性能较好。对于使用不同直径混合室的系统,随着气体冷却器压力的升高,使用小直径混合室的系统COP变化较大;当气体冷却器压力较低时,使用大直径混合室的系统COP较高,而当气体冷却器压力较高时,使用小混合室直径的系统性能较好。在相同工况下,与传统跨临界CO2循环进行比较,两相流引射制冷循环系统COP最大可提高14%。  相似文献   

16.
为研究送风温度对实际车用跨临界CO2制冷系统综合性能的影响,借助GT-Suite仿真软件,建立了单级跨临界CO2制冷系统的仿真模型。基于设计的三种工况,在风量设置上限的情况下对比了不同送风温度下系统的性能,提出了有效COPeff的概念并对此进行研究。结果表明:在其他工况相同的条件下,提高送风温度可以提高系统的COP、有效COPeff以及带风机功耗的有效COPeff, b;在低冷负荷工况下,考虑系统风机功耗后的综合性能COPb存在最优值为3.819,即系统存在对应的最优送风温度,但当负荷增大至一定水平时,最优送风温度不再存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号