首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
为了提高燃气机热泵在低环境温度下的制热性能,本文将燃气机热泵技术与复叠式热泵技术相结合,提出了应用于低环境温度下的复叠式燃气机热泵(CGEHP)系统。使用MATLAB软件,建立了CGEHP数学模型。分析了燃气发动机转速、环境温度和系统进水温度对系统供热性能(总供热量、制热性能系数(COP)以及一次能源利用率(PER))的影响规律。结果表明:当环境温度分别为﹣20、﹣15和﹣10 ℃,以NH3-LiNO3作为吸收式热泵系统工质,发动机转速为1 500 r/min时,PER分别为1.0、1.02、1.04,比常规空气源电热泵系统分别提高了24%、15%、5%。  相似文献   

2.
设计开发了一台面向商用的天然气发动机驱动风冷热泵冷热水机组(简称"燃气机热泵").对燃气机热泵的设计方法和安装问题进行了介绍.重点对系统设计中的机组型式的选择、热泵(制冷)系统的设计要点、发动机和压缩机的匹配,以及余热回收和散热系统的设计这四个方面进行了论述.对机组在不同环境温度、不同出水温度和不同转速下冷热量和一次能耗进行了测试.  相似文献   

3.
电动汽车热泵空调系统冬季采暖性能实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过实验研究了电动汽车三换热器热泵空调系统在冬季运行时的采暖性能,研究分析了压缩机在不同转速(2 000~5 000 r/min)下,室内外环境温度和相对湿度对系统内压缩机排气特性、汽车HVAC总成出风温度和COP等系统性能参数的影响。结果表明:较高的压缩机转速使出风温度和制热量明显上升,但系统COP有所降低;当保持压缩机转速不变时,环境温度每升高5℃时,制热量升高9%~22%,出风温度上升6~9℃,COP上升7%~11%;室外相对湿度由40%增至80%时,制热量增加了15%~20%,出风温度上升2~3℃,COP上升6%~9%。  相似文献   

4.
中高温水源热泵工质的筛选与分析   总被引:1,自引:0,他引:1  
为了更好地提高中高温水源热泵机组的性能,首先简要分析中高温水源热泵制冷剂的选取原则.对几种中高温热泵工质进行热力计算和比较,计算中蒸发器的进水温度为30~50 ℃,冷凝器的出水温度为70~90 ℃.结果表明:R123可用于水源的中高温热泵机组,供热温度可以达到95 ℃,R134a可适用于冷凝温度为中温的水源热泵机组,R22/R142b的混合工质也适用于中高温热泵系统的要求.  相似文献   

5.
为研究变转速压缩机对复叠式热泵系统的影响,本文搭建了高温压缩机变转速的复叠式热泵实验台。通过实验研究了不同运行工况下系统排气温度、中间温度、制热量、功率及COP随高温压缩机转速的变化规律。结果表明:在冷凝温度为46℃,蒸发温度为-35℃~-10℃时,压缩机运行安全可靠;在冷凝温度为46℃,蒸发温度为-25℃,高温压缩机转速从1 200 r/min增至6 000 r/min,制热量提升了129. 7%,低温压缩机功率减少43.4%; COP随高温压缩机转速的增加呈先增大后减小的趋势,存在最大COP和对应的最佳高温压缩机转速。  相似文献   

6.
费人杰 《制冷》2003,22(2):32-32
大连三洋制冷有限公司最新推出SGP系列燃气热泵 (GHP)空调机组 ,制冷量为 2 2 4~ 56kW (相应制热量为 2 6 5~ 67kW)燃气热泵中央空调系统由室外机、室内机、连接管路、配套系统 (气、电、水 )等组成。室外机包括燃气发动机、压缩机、冷凝器 (或蒸发器 )、四通阀、排气热交换器等。运转时 ,由燃气发动机驱动压缩机完成制冷、制热循环 ;制热时 ,由于吸收利用了发动机排出的冷却水和废气的热量 ,制热能力显著增加。  GHP燃气热泵的主要优点如下 :运行经济性能较好 ,与EHP电动热泵空调相比 ,用电量仅为EHP的1 /1 0 ,运行费用约为EH…  相似文献   

7.
动力电池热管理对电池的运行效率、寿命、可靠性至关重要。基于客户要求设计一款额定制冷量及制热量分别约为7 kW和12 kW的热管理机组,并对其性能进行试验研究。结果表明:制冷量及COP随进水温度、进水流量的增大而增大,在压缩机转速为4 000 r/min时,制冷量最高可达9. 5 kW,COP最大可达2. 5;当环境温度在30℃以下时,COP随压缩机转速的增大先增大后减小,当环境温度在30℃以上时,COP随压缩机转速的增大而减小;系统的平均降温速率约为2℃/min;当PTC的设定功率大于6 kW时,PTC的实际功率与设定功率的误差在10%以内。  相似文献   

8.
由燃气发动机和电动机联合驱动的混合动力热泵(HPHP)是提高燃气供热和制冷效率的发展方向之一,但其在系统设计和运行策略上还存在提升空间。本文提出了供热和供冷均由燃气发动机与电动机联合驱动的HPHP,并建立数学模型。通过模型计算,针对设计工况下发动机占最大输出功60%下的HPHP,并与燃气机热泵(GEHP)和电热泵(EHP)进行对比,分析了不同环境温度下的发动机效率和一次能源利用效率(PER)。结果表明:HPHP可减小发动机容量,当环境温度为-9~-1℃时,HPHP的发动机效率相比于GEHP提高了3.2%~9.4%;对于PER,HPHP与EHP相比于GEHP有较大的提高;当室外温度为-9~3℃时,与EHP相比,HPHP的PER比EHP提高了1.2%~9.5%,当温度继续升高时HPHP与EHP的PER较接近。因此从整个供暖季的能效角度考虑,HPHP系统相比于GEHP和EHP具有较大的节能潜力。  相似文献   

9.
基于一款电动汽车空调设计热泵空调系统试验台架,研究不同压缩机转速和环境温度条件下双换热器系统和三换热器系统对热泵空调系统换热性能、总成出风口平均温度及系统COP的影响。结果表明,环境温度越高双换热器系统和三换热器系统的换热性能越高,且三换热器系统的性能优势越明显;压缩机转速为5 500 r/min,室外环境温度分别为7℃,1℃和-5℃工况下,三换热器系统较双换热器系统总成出风口平均温度分别高8.0℃,7.2℃和6.1℃,系统COP分别提高15.0%,16.5%和18.2%,电动汽车除霜、除雾的速度提高。  相似文献   

10.
复叠式空气源热泵热水器可以在冬季低温(-25℃)下最高提供80℃热水,但是机组结霜问题对机组的效率和供热性能影响较大。通过研究复叠式热泵热水器的结霜规律以及结霜对机组性能的影响,为进一步研究并优化除霜控制方法提供依据。系统分为低温级循环和高温级循环,低温级循环为室外系统,高温级循环及蒸发冷凝器部分为室内系统,热泵循环低温级采用R410A作为循环工质,高温级采用R134a,热泵系统高温级冷凝温度为80℃,低温级的蒸发温度可达-40℃。通过在焓差实验室实验进行研究。测试复叠式热泵的结霜过程时间与结霜量,得到不同室外温湿度与结霜量之间的关系。结霜量通过测量低温级蒸发器进出口含湿量的方法获得,并分析结霜对于机组实际耗电量以及COP等性能参数的影响。  相似文献   

11.
本文针对热泵空调系统在冬季低温工况下制热能力衰减问题,通过换热器设计优化,研发出基于喷射补气的余热回收型热泵空调系统,并进行了性能实验研究.结果表明:研制的准二级压缩电动客车热泵空调系统在低温条件下具有较好的制热性能.在环境温度为-20℃,车内温度为20℃,余热量为1.8 kW的制热工况下,相比于无余热回收工况,系统制...  相似文献   

12.
The coefficient of performance (COP) and heating capacity of the absorption heat pump (AHP) decreased obviously as the evaporator inlet temperature dropped. Compression-assisted AHP (CAHP) could operate efficiently in colder conditions, and a prototype was constructed for experimental investigation. At a generator inlet of 130 °C, as the evaporator inlet decreases from −5 °C to −25 °C, the COP drops from 1.513 to 1.372, while the heating capacity deteriorates from 77.26 kW to 47.11 kW. Comparisons between CAHP and normal AHP indicated that CAHP can extend the lower limit of evaporator inlet temperature from −10 °C to −25 °C. Besides, CAHP can enhance the heating capacity by approximately 55.5–85.0% even when AHP can operate normally. Moreover, the improvement contributed by CAHP is greater under much colder conditions. The heating COP and capacity of CAHP are improved in all the conditions, while the primary energy efficiency is advantageous under lower evaporator inlet temperatures.  相似文献   

13.
This paper presents the experimental results obtained from a new heat pump prototype for sanitary hot water production, in the application of heat recovery from water sources like sewage water or condensation loops (typical temperature condition between 10 °C and 30 °C). The system configuration is able to produce a high degree of subcooling in order to take advantage from the high water temperature glide (typical value for sanitary hot water production is 10 °C to 60 °C). Subcooling is made by using a separate heat exchanger from the condenser (subcooler). The obtained results have shown a high degree of improvement by making subcooling. COP is 5.61 in nominal conditions, which is about 31% higher than the same cycle working without subcooling (Nominal point: inlet/outlet water temperature at evaporator is 20 °C/15 °C and the water inlet/outlet temperature in the heat sink is 10 °C and 60 °C).  相似文献   

14.
Evaporative condenser is an energy efficient and environmentally friendly air conditioning equipment. This paper proposed an air conditioning system using dual independent evaporative condenser and investigated the cooling performance. Many factors, such as evaporator water inlet temperature, compressor frequency, air dry-bulb temperature, air velocity and water spray rate, which influenced the cooling performances of air conditioning system with evaporative condenser have been investigated. The results indicated that cooling capacity and coefficient of performance (COP) increased significantly with the increasing of evaporator water inlet temperature (12–25 °C), the air velocity (2.05–3.97 m s−1) and the water spray rate (0.03–0.05 kg m−1 s). However, COP decreased with the increasing ambient air dry-bulb temperature (31.2–35.1 °C) and the compressor frequency (50–90 Hz). Furthermore, the heat transfer coefficient (K0) was 232–409 W m−2 K−1 in different air velocity and water spray rate.  相似文献   

15.
A silica gel-water adsorption chiller driven by low-grade heat is developed. System configuration without any vacuum valves includes two sorption chambers, a 4-valve hot/cooling water coupled circuit and a 4-valve chilled water circuit. Each sorption chamber is composed of one adsorber, one condenser and one evaporator. The design of this chiller, especially the design of modular adsorber, is suitable for low-cost industrial production. Efficient and reliable heat and mass recovery processes are also adopted. This chiller is tested under different conditions and it features the periodic variations of temperatures and cooling power. Through the experimental study, the optimal cooling time, mass recovery time and heat recovery time are 720 s, 40 s and 24 s, respectively. Besides, the obtained cooling power, COP and SCP are 42.8 kW, 0.51 and 125.0 W kg−1, respectively, under typical conditions of 86/30/11 °C hot water inlet/cooling water inlet/chilled water outlet temperatures, respectively.  相似文献   

16.
This study presents an experimental investigation of a solar thermal powered ammonia–water absorption refrigeration system. The focus of this study lies on the design of the components of the absorption chiller, the ice storages and the solar collector field as well as the integration of the data acquisition and control unit. An ammonia–water (NH3/H2O) absorption chiller was developed in the laboratory of the Institute of Thermodynamics & Thermal Engineering (ITW) at the University of Stuttgart (Germany). A demonstration plant was built in the laboratory of the CoRE-RE at King Fahd University of Petroleum & Minerals (KFUPM – Saudi Arabia). The whole system was tested successfully. The results of the experiments indicated a chiller coefficient of performance (COP) of 0.69 and a cooling capacity of 10.1 kW at 114/23/−2 (°C) representing the temperatures of the generator inlet, the condenser/absorber inlet and the evaporator outlet respectively. Even at 140/45/−4 (°C), the chiller was running with a cooling capacity of 4.5 kW and a COP of 0.42.  相似文献   

17.
The prototype of an air-cooled double-lift NH3–H2O absorption chiller driven by hot water at low temperature is presented. The main objective of the study is to illustrate the experimental performances of the prototype under different operating conditions. A mathematical model of the cycle is developed, along with a procedure for the identification of otherwise difficult to measure data, with the purpose of providing the complete picture of the internal thermodynamic cycle. The combined experimental and numerical data allowed assessing the effects on the thermodynamic cycle with varying operating conditions. The unit operated steadily with chilled water inlet 12 °C, outlet 7 °C, air temperature between 22 °C and 38 °C, and hot water driving temperatures between 80 °C and 90 °C. The reference cooling capacity at air temperature of 30 °C is 2.5 kW, with thermal COP about 0.3 and electrical COP about 10.  相似文献   

18.
In this paper, the effect of intermediate water temperature on the performance of a combined R134a and transcritical CO2 heat pump was studied theoretically and experimentally. The mathematical model was first validated using experimental data and then applied to analyze the performance of the combined system. The results show that there exists an optimal intermediate water temperature (water inlet temperature at the gas cooler) at which the combined system has the highest COP. This optimal intermediate water temperature varies with the ambient air temperature. Furthermore, the effect of intermediate water temperature on individual R134a and transcritical CO2 subsystems was investigated. The results show that both heating capacity and power consumption in the R134a subsystem increase as the intermediate water temperature increases. However, power consumption in the CO2 system drops slightly, and heating capacity reaches an optimal value as the intermediate water temperature increases from 15 to 32 °C under ambient air temperatures ranging from −20 to 7 °C.  相似文献   

19.
In this study, usage of a variable speed refrigeration system in latent heat thermal energy storage (LHTES) system is investigated to increase energy storage efficiency. Four different compressor speed control cases are compared to obtain a constant heat transfer fluid (HTF) temperature at the inlet of the energy storage tank. These control cases are (i) control with evaporation temperature, (ii) control with ethylene glycol temperature at the outlet section of evaporator, (iii) control with suction pressure of the compressor and (iv) on/off control. By means of the experimental analysis the best control strategy is obtained as control with Case (ii), in terms of stability of inlet temperature of heat transfer fluid, variations of energy efficiency of LHTES and coefficient of performance (COP) of the system. While the Case (ii) provides the most stabile inlet temperature of HTF, Case (iv) represents the worst stability. Besides, the highest energy efficiency (99.0%), exergy efficiency (87.0%) and COP (2.05) values observed in Case (ii). Additionally, the time period to reach the set value is nearly 50 min in Case (i), Case (iii) and Case (iv) on the other hand this unstable initial time period becomes nearly 25 min for Case (ii). As a result, variable speed compressor should be controlled with Case (ii) to stabilize ethylene glycol-water solution temperatures as well as increase efficiency and COP of the system.  相似文献   

20.
A new type of oil-free moving magnet linear compressor with clearance seals and flexure springs has been designed for incorporation into a vapour compression refrigeration system with compact heat exchangers for applications such as electronics cooling. A linear compressor prototype was built with a maximum stroke of 14 mm and a piston diameter of 19 mm. An experimental apparatus was built to measure the compressor efficiencies and coefficient of performance (COP) of a refrigeration system with the linear compressor, using R134a. The resonant frequency for each operating condition was predicted using the discharge pressure, suction pressure and stroke. Refrigeration measurements were conducted for different strokes under each pressure ratio with a fixed condenser outlet temperature of 50 °C and evaporator temperature ranging from 6 °C to 27 °C. The results show that the COPs are around 3.0 for tests with a pressure ratio of 2.5 (evaporator temperature of 20 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号