首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using exact 3D vectorial simulations of radiation coupling into uncoated dielectric fiber probes, we calculate amplitude transfer functions for conical single-mode fiber tips at the light wavelength of 633 nm. The coupling efficiency of glass fiber tips is determined in a wide range of spatial frequencies of the incident radiation for opening angles varying from 30 degrees to 120 degrees . The resolution in near-field imaging with these tips is considered for field distributions limited in both direct and spatial-frequency space. The characteristics of the transfer functions describing the relation between probed optical fields and near-field images are analyzed in detail. The importance of utilizing a perfectly sharp tip is also examined.  相似文献   

2.
Near-field scanning optical microscopy (NSOM) offers high optical resolution beyond the diffraction limit for various applications in imaging, sensing, and lithography; however, for many applications the very low brightness of NSOM aperture probes is a major constraint. Here, we report a novel NSOM aperture probe that gives a 100× higher throughput and 40× increased damage threshold than conventional near-field aperture probes. These brighter probes facilitate near-field imaging of single molecules with apertures as small as 45 nm in diameter. We achieve this improvement by nanostructuring the probe and by employing a novel variant of extraordinary optical transmission, relying solely on a single aperture and a coupled waveguide. Comprehensive electromagnetic simulations show good agreement with the measured transmission spectra. Due to their significantly increased throughput and damage threshold, these resonant configuration probes provide an important step forward for near-field applications.  相似文献   

3.
Khan RR  Dhadwal HS  Suh K 《Applied optics》1994,33(25):5875-5881
An integrated fiber-optic probe comprising a short length of multimode fiber that is fusion spliced to a monomode optical fiber has been fabricated for imaging and nonimaging applications. The fiber probe, typically 250 μm in diameter, can deliver a focused Gaussian spot approximately 25 μm in diameter at a distance of approximately 500 μm from the tip. Two off-the-shelf graded-index multimode fibers have been used in the fabrication of imaging and nonimaging probes. These integrated probes have considerably improved the spatial resolution of backscatter lensless fiber probes being utilized in the dynamic light-scattering characterization of colloidal suspension.  相似文献   

4.
A cantilever-based probe is introduced for use in scanning near-field optical microscopy (SNOM) combined with scanning atomic-force microscopy (AFM). The probes consist of silicon cantilevers with integrated 25-mum-high fused-silica tips. The probes are batch fabricated by microfabrication technology. Transmission electron microscopy reveals that the transparent quartz tips are completely covered with an opaque aluminum layer before the SNOM measurement. Static and dynamic AFM imaging was performed. SNOM imaging in transmission mode of single fluorescent molecules shows an optical resolution better than 32 nm.  相似文献   

5.
Fang X  Tan W 《Analytical chemistry》1999,71(15):3101-3105
We have developed a new fluorescent method for single-molecule detection (SMD) and imaging using an optical fiber probe. The fluorophores were excited by the evanescent wave field produced on the core surface of the optical fiber. This was achieved by exposing a section of the core of the optical fiber probe to the fluorophore solution. Both cylindrical and square optical fiber probes were used for SMD. The fluorescent signals were detected by an intensified charge-coupled device. Single rhodamine 6G molecules have been detected. The number of rhodamine 6G molecules imaged by the optical fiber probe showed an excellent linear relationship with the concentrations of the fluorophores. The SMD scheme was also applied to the imaging of biomolecules, such as molecular beacon DNA molecules, labeled with tetramethylrhodamine. Our results have shown that using an optical fiber is an easy yet effective approach to SMD. It represents a simpler fluorescent method for the detection of single-molecules in solution and at an interface.  相似文献   

6.
We derived a simple method to fabricate STM-SNOM hybrid probes obtained from commercial cheap communication optical fibers. The tips are fabricated by a methodology that combines two well-known techniques: the selective attack by a buffered solution and the protected layer chemical etching, in a single new one-step technique. The tailored probes are then sputtered by metal and mounted on a STM setup. The usual difficulties of integrating the optical fiber in the STM head are solved originally with a particular home made mount described in details. We will show that the resulting probes reach atomic resolution on both vertical and horizontal scale, and that the optical imaging is free of artifacts and satisfactory with a lateral resolution in the order of lamda/20, as far as we know the finest resolution obtained with a system based on a hybrid fiber probe. We believe that our methodology is very interesting for its simplicity of realization and for the good resolving power in both SNOM and STM modes.  相似文献   

7.
Fabrication method and device of ultra-small gradient-index(GRIN) fiber probe were investigated in order to explore the development of ultra-small probes for optical coherence tomography(OCT) imaging.The beamexpanding effect of no-core fiber(NCF) and the focusing properties of the GRIN fiber lens were analyzed based on the model of GRIN fiber probe consisting of single-mode fiber(SMF),NCF and GRIN fiber lens.A stereo microscope based system was developed to fabricate the GRIN fiber probe.A fiber fusion splicer and an ultrasonic cleaver were used to weld and cut the fiber respectively.A confocal microscopy was used to measure the dimensions of probe components.The results show that the sizes of probe components developed are at the level of millimeter.Therefore,the proposed experimental system meets the fabrication requirements of an ultra-small self-focusing GRIN fiber probe.This shows that this fabrication device and method can be employed in the fabrication of ultrasmall self-focusing GRIN fiber probe and applied in the study of miniaturized optical probes and OCT systems.  相似文献   

8.
Wang X  Liu C 《Nano letters》2005,5(10):1867-1872
This letter reports the design, fabrication, and testing of a multifunctional scanning probe array for nanoscale imaging and patterning. The probe array consists of multiple cantilever probes, with each probe being able to perform a dedicated function such as scanning probe lithography (e.g., dip pen nanolithography and scanning probe contact printing) or scanning probe microscopy (e.g., atomic force microscopy and lateral force microscopy). The bending states of each probe can be controlled by using an integrated thermal electric actuator so that it is possible to engage any individual probe(s) independently for writing or imaging purposes. The multifunctional probe array is therefore capable of performing a rich variety of operations with minimal chemical crosstalk and high registration accuracy. It will eliminate the need for probe chip exchanges and increase the operational efficiency. The probe tips in a given array may be made of different materials. Further, the tip and cantilever may be made of different materials for a given probe. In this work, we focus on the development of a probe array consisting of dip pen nanolithography probes, scanning probe contact printing probes (of various tip sizes), and scanning probe microscopy probes.  相似文献   

9.
The tips of the probes are the key components in scanning probe microscopes and their applications in nano-scale imaging and nanofabrications. We investigated first the change of near-field scanning optical microscopy probe tips from optical fiber against time by chemical static etching. Several coverlayer-hydrofluoric acid aqueous solution systems and their possible factors affecting the tips' profile were studied. Tips with shorter tapers, larger conical aperture angles, and reproducible shapes were successfully obtained in high yields. It was found that the taper profiles were affected to a great extent by the one-dimensional linear diffusion of etchants in the coverlayer caused by concentration gradients and convection.  相似文献   

10.
B He  L Xi  SR Samuelson  H Xie  L Yang  H Jiang 《Applied optics》2012,51(20):4678-4683
A novel handheld probe based on a microelectromechanical systems (MEMS) scanning mirror for three-dimensional (3D) fluorescence molecular tomography (FMT) is described. The miniaturized probe consists of a MEMS mirror for delivering an excitation light beam to multiple preselected points at the tissue surface and an optical fiber array for collecting the fluorescent emission light from the tissue. Several phantom experiments based on indocyanine green, an FDA approved near-infrared (NIR) fluorescent dye, were conducted to assess the imaging ability of this device. Tumor-bearing mice with systematically injected tumor-targeted NIR fluorescent probes were scanned to further demonstrate the ability of this MEMS-based FMT for imaging small animals.  相似文献   

11.
This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE).  相似文献   

12.
Carbon nanotubes (CNTs) used as a probe for scanning probe microscopy has become one of the many potential usages of CNTs that is finding real applications in scientific research and industrial communities. It has been proposed that the unique mechanical buckling properties of the CNT would lessen the imaging force exerted on the sample and, thus, make CNT scanning probes ideal for imaging soft materials, including biological samples in liquid environments. The hydrophobic nature of the CNT graphitic sidewall is clearly chemically incompatible with the aqueous solution requirements in some biological imaging applications. In this paper, we present electron micrograph results demonstrating the instability of CNT scanning probes when submerged in aqueous solution. Moreover, we also introduce a novel approach to resolve this chemical incompatibility problem. By coating the CNT probe with ethylenediamine, thus rendering the CNT probe less hydrophobic, we demonstrate the liquid imaging capability of treated CNT probes. Experimental data for imaging in aqueous solutions are presented, which include an ultrathin Ir film and DNA molecules on a mica surface.  相似文献   

13.
Developing optical tumor imaging probes with minimal background noise is very important for its early detection of small lesions and accurate diagnosis of cancer. To overcome the bottleneck of low signal to noise ratio and sensitivity, it needs further improvement in fluorescent probe design and understanding of tumor development process. Recent reports reveal that lysosome's acidity in cancer cells can be below 4.5 with high Na+/H+ exchange activity, which makes it an ideal target intracellular organelle for cancer diagnosis based on the variation of pH. Herein, a boron 2‐(2′‐pyridyl) imidazole complex derivative (BOPIM‐N) is developed, with the ability to show a pH‐activatable “OFF–ON” fluorescent switch by inhibiting twisted intramolecular charge transfer upon protonation at pH 3.8–4.5, which is studied for its selective viable cancer cell imaging ability in both in vitro and in vivo experiments. Interestingly, BOPIM‐N can specifically emit green fluorescence in lysosomes of cancer cells, indicating its promising cancer cell specific imaging ability. More importantly, nanoformulated BOPIM‐N probes can be specifically light‐ON in tumor bearing site of nude mice with resolution up to cellular level, indicating its potential application in tumor diagnosis and precision medicine.  相似文献   

14.
Smart molecular probes that emit deep‐tissue penetrating photoacoustic (PA) signals responsive to the target of interest are imperative to understand disease pathology and develop innovative therapeutics. This study reports a self‐assembly approach to develop semiconducting macromolecular activatable probe for in vivo imaging of reactive oxygen species (ROS). This probe comprises a near‐infrared absorbing phthalocyanine core and four poly(ethylene glycol) (PEG) arms linked by ROS‐responsive self‐immolative segments. Such an amphiphilic macromolecular structure allows it to undergo an ROS‐specific cleavage process to release hydrophilic PEG and enhance the hydrophobicity of the nanosystem. Consequently, the residual phthalocyanine component self‐assembles and regrows into large nanoparticles, leading to ROS‐enhanced PA signals. The small size of the intact macromolecular probe is beneficial to penetrate into the tumor tissue of living mice, while the ROS‐activated regrowth of nanoparticles prolongs the retention along with enhanced PA signals, permitting imaging of ROS during chemotherapy. This study thus capitalizes on stimuli‐controlled self‐assembly of macromolecules in conjunction with enhanced heat transfer in large nanoparticles for the development of smart molecular probes for PA imaging.  相似文献   

15.
Kino S  Matsuura Y 《Applied spectroscopy》2007,61(12):1334-1337
Remote spectroscopy systems based on hollow optical fiber probes are proposed and experimental results using a Fourier transform spectroscope are presented. A hollow optical-fiber probe with a silver and polymer inner coating is used to deliver incoherent light to a target and another separate hollow fiber is used to collect the reflected light. The reflectance spectra of teeth, skin, and oral mucosa were successfully measured with the probe even from surfaces with reflectances lower than 0.5%. The preliminary results obtained using attenuated total reflection spectroscopy are also presented. This remote infrared spectroscope is useful for endoscopic measurements inside the body because it is flexible, durable, nontoxic, and has the low transmission losses associated with hollow-fiber-based probes.  相似文献   

16.
In vivo molecular imaging of tumors targeting a specific cancer cell marker is a promising strategy for cancer diagnosis and imaging guided surgery and therapy. While targeted imaging often relies on antibody‐modified probes, peptides can afford targeting probes with small sizes, high penetrating ability, and rapid excretion. Recently, in vivo fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) shows promise in reaching sub‐centimeter depth with microscale resolution. Here, a novel peptide (named CP) conjugated NIR‐II fluorescent probe is reported for molecular tumor imaging targeting a tumor stem cell biomarker CD133. The click chemistry derived peptide‐dye (CP‐IRT dye) probe afforded efficient in vivo tumor targeting in mice with a high tumor‐to‐normal tissue signal ratio (T/NT > 8). Importantly, the CP‐IRT probes are rapidly renal excreted (≈87% excretion within 6 h), in stark contrast to accumulation in the liver for typical antibody‐dye probes. Further, with NIR‐II emitting CP‐IRT probes, urethra of mice can be imaged fluorescently for the first time noninvasively through intact tissue. The NIR‐II fluorescent, CD133 targeting imaging probes are potentially useful for human use in the clinic for cancer diagnosis and therapy.  相似文献   

17.
扫描探针显微镜(SPM)是微纳结构三维测量中的一项重要技术。然而,在测量过程中台阶或沟槽样品的边缘附近会出现不准确的轮廓,这就造成了深度测量的精度损失。为了避免深度测量的精度损失,分别建立了机械探针和光学探针的两个分析模型,描述了不准确轮廓、样品深度和探针形状之间的耦合关系;在此基础上,提出了一种具有良好精度的深度测量标定方法。与现有的国际深度测量标准(W/3规则)进行比较,该方法提供了一个明确的边界来确定测量结果是否有效;此外,它还可以指导用户在执行测量之前选择适当的探针。  相似文献   

18.
As one of the reduction species, glutathione (GSH) plays a tremendous role in regulating the homeostasis of redox state in living body. Accurate imaging of GSH in vivo is highly desired to provide a real‐time visualization of physiological and pathological conditions while it is still a big challenge. Recently developed photoacoustic imaging (PAI) with high resolution and deep penetration characteristics is more promising for in vivo GSH detection. However, its application is dramatically limited by the difficult designation of photoacoustic probes with changeable near‐infrared (NIR)‐absorption under reductive activation. A cyanine derivative‐based activatable probe is developed for in vivo ratiometric PAI of GSH for the first time. The probe is structurally designed to output ratiometric signals toward GSH in NIR‐absorption region based on the cleavage of disulfide bond followed by a subsequent exchange between the secondary amine and sulfydryl group formed. Such a ratiometric manner provides high signal‐to‐noise imaging of blood vessels and their surrounding areas in tumor. Concomitantly, it also exhibits good specificity toward GSH over other thiols. Furthermore, the single composition architecture of the probe effectively overcomes the leakage issue compared with traditional multicomposition architecture‐based nanoprobe, thus enhancing the imaging accuracy and fidelity in living body.  相似文献   

19.
The visualization of microtubules by combining optical and electron microscopy techniques provides valuable information to understand correlated intracellular activities. However, the lack of appropriate probes to bridge both microscopic resolutions restricts the areas and structures that can be comprehended within such highly assembled structures. Here, a versatile cyclometalated iridium (III) complex is designed that achieves synchronous fluorescence–electron microscopy correlation. The selective insertion of the probe into a microtubule triggers remarkable fluorescence enhancement and promising electron contrast. The long-life, highly photostable probe allows live-cell super-resolution imaging of tubulin localization and motion with a resolution of ≈30 nm. Furthermore, correlative light–electron microscopy and energy-filtered transmission electron microscopy reveal the well-associated optical and electron signal at a high specificity, with an interspace of ≈41 Å of microtubule monomer in cells.  相似文献   

20.
Liu L  He S 《Applied optics》2005,44(17):3429-3437
A dispersive body-of-revolution finite-difference time-domain method is developed to simulate metal-cladded near-field scanning optical microscope (NSOM) probes. Two types of NSOM probe (aperture and plasmon NSOM probes) are analyzed and designed with this fast method. The influence of the metal-cladding thickness and the excitation mode on the performance of the NSOM probes is studied. We introduce a new scheme of illumination-mode NSOM by employing the plasmon NSOM probe with the TM01 mode excitation. Such a NSOM probe is designed, and we demonstrate its advantages over the conventional aperture NSOM probe by scanning across a metallic object.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号