首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The meshless hybrid boundary node method (HBNM) is a promising method for solving boundary value problems, and is further developed and numerically implemented for incompressible 2D and 3D Stokes flows in this paper. In this approach, a new modified variational formulation using a hybrid functional is presented. The formulation is expressed in terms of domain and boundary variables. The moving least-squares (MLS) method is employed to approximate the boundary variables whereas the domain variables are interpolated by the fundamental solutions of Stokes equation, i.e. Stokeslets. The present method only requires scatter nodes on the surface, and is a truly boundary type meshless method as it does not require the ‘boundary element mesh’, either for the purpose of interpolation of the variables or the integration of ‘energy’. Moreover, since the primitive variables, i.e., velocity vector and pressure, are employed in this approach, the problem of finding the velocity is separated from that of finding pressure. Numerical examples are given to illustrate the implementation and performance of the present method. It is shown that the high convergence rates and accuracy can be achieved with a small number of nodes.  相似文献   

2.
Fast HdBNM for large-scale thermal analysis of CNT-reinforced composites   总被引:1,自引:1,他引:0  
Because of their high thermal conductivities, carbon nanotubes (CNT) have promising potential in development of fundamentally new composites. To study the influence of CNTs distribution on the overall properties of a composite, the modeling of a Representative Volume Element (RVE) including a large number of CNTs that are randomly distributed and oriented is necessary. However, analysis of such a RVE using standard numerical methods faces two severe difficulties, namely the discretization of the geometry and a very large computational scale. In this paper, the first difficulty is alleviated by employing the Hybrid Boundary Node Method (HdBNM), which is a form of the boundary type meshless methods. To overcome the second difficulty, the Fast Multipole Method (FMM) is combined with the HdBNM to solve a simplified mathematical model. RVEs containing various numbers of CNTs with different lengths, shapes and alignments have been analyzed, resulting in valuable insights gained into the thermal behavior of the composite material.  相似文献   

3.
         下载免费PDF全文
A Meshless Local Petrov-Galerkin (MLPG) method has been developed for solving 3D elasto-dynamic problems. It is derived from the local weak form of the equilibrium equations by using the general MLPG concept. By incorporating the moving least squares (MLS) approximations for trial and test functions, the local weak form is discretized, and is integrated over the local sub-domain for the transient structural analysis. The present numerical technique imposes a correction to the accelerations, to enforce the kinematic boundary conditions in the MLS approximation, while using an explicit time-integration algorithm. Numerical examples for solving the transient response of the elastic structures are included. The results demonstrate the efficiency and accuracy of the present method for solving the elasto-dynamic problems; and its superiority over the Galerkin Finite Element Method.  相似文献   

4.
In this paper, the Galerkin boundary node method (GBNM) is developed for the solution of stationary Stokes problems in two dimensions. The GBNM is a boundary only meshless method that combines a variational form of boundary integral formulations for governing equations with the moving least-squares (MLS) approximations for construction of the trial and test functions. Boundary conditions in this approach are included into the variational form, thus they can be applied directly and easily despite the MLS shape functions lack the property of a delta function. Besides, the GBNM keeps the symmetry and positive definiteness of the variational problems. Convergence analysis results of both the velocity and the pressure are given. Some selected numerical tests are also presented to demonstrate the efficiency of the method.  相似文献   

5.
The hybrid boundary node method (HBNM) retains the meshless attribute of the moving least squares (MLS) approximation and the reduced dimensionality advantages of the boundary element method. However, the HBNM inherits the deficiency of the MLS approximation, in which shape functions lack the delta function property. Thus in the HBNM, boundary conditions are implemented after they are transformed into their approximations on the boundary nodes with the MLS scheme.This paper combines the hybrid displacement variational formulation and the radial basis point interpolation to develop a direct boundary-type meshless method, the hybrid radial boundary node method (HRBNM) for two-dimensional potential problems. The HRBNM is truly meshless, i.e. absolutely no elements are required either for interpolation or for integration. The radial basis point interpolation is used to construct shape functions with delta function property. So unlike the HBNM, the HRBNM is a direct numerical method in which the basic unknown quantity is the real solution of nodal variables, and boundary conditions can be applied directly and easily, which leads to greater computational precision. Some selected numerical tests illustrate the efficiency of the method proposed.  相似文献   

6.
    
This paper presents a fast formulation of the hybrid boundary node method (Hybrid BNM) for solving problems governed by Laplace's equation in 3D. The preconditioned GMRES is employed for solving the resulting system of equations. At each iteration step of the GMRES, the matrix–vector multiplication is accelerated by the fast multipole method. Green's kernel function is expanded in terms of spherical harmonic series. An oct‐tree data structure is used to hierarchically subdivide the computational domain into well‐separated cells and to invoke the multipole expansion approximation. Formulations for the local and multipole expansions, and also conversion of multipole to local expansion are given. And a binary tree data structure is applied to accelerate the moving least square approximation on surfaces. All the formulations are implemented in a computer code written in C++. Numerical examples demonstrate the accuracy and efficiency of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
         下载免费PDF全文
The meshless local Petrov-Galerkin approach is proposed for the nonlinear dynamic analysis of three-dimensional (3D) elasto-plastic problems. Galerkin weak-form formulation is applied to derive the discrete governing equations. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a unit test function and local weak-form formulation in three dimensional continua for the general dynamic problems is derived. Three dimensional Moving Least-Square (MLS) approximation is considered as shape function to approximate the field variable of scattered nodes in the problem domain. Normality hypothesis of plasticity is adopted to define the stress-strain relation in elasto-plastic analysis and the unknown plastic multiplier is obtained by the consistency condition. Von Mises yield criterion in three dimensional space is used as a yield function to determine whether the material has yielded. The Newmark time integration method in an incremental form is used to solve the final system of nonlinear second order Ordinary Differential Equations (ODEs). Several numerical examples are given to demonstrate the accuracy and effectiveness of the present numerical approach.  相似文献   

8.
    
This work proposes a modified procedure, based on analytical integrations, to analyse poroelastic models discretized by time-domain Meshless Local Petrov-Galerkin formulations. In this context, Taylor series expansions of the incognita fields are considered, and the related integrals of the meshless formulations are solved analytically, rendering a so called modified methodology. The work is based on the u-p formulation and the incognita fields of the coupled analysis in focus are the solid skeleton displacements and the interstitial fluid pore pressures. Independent spatial discretization is considered for each phase of the model, rendering a more flexible and efficient methodology. The Moving Least Squares approximation is employed for the spatial variation of the displacement and pore-pressure fields and two variants of the meshless local Petrov-Galerkin formulation are discussed here, which are based on the use of Heaviside or Gaussian weight test functions. Modified expressions to properly compute the shape function derivatives are also considered. At the end of the paper, numerical examples illustrate the performance and potentialities of the proposed techniques.  相似文献   

9.
This paper discusses reliability-based design optimization (RBDO) of an automotive knuckle component under bump and brake loading conditions. The probabilistic design problem is to minimize the weight of a knuckle component subject to stresses, deformations, and frequency constraints in order to meet the given target reliability. The initial design is generated based on an actual vehicle specification. The finite element analysis is conducted using ABAQUS, and the probabilistic optimal solutions are obtained via the moving least squares method (MLSM) in the context of approximate optimization. For the meta-modeling of inequality constraint functions, a constraint-feasible moving least squares method (CF-MLSM) is used in the present study. The method of CF-MLSM based RBDO has been shown to not only ensure constraint feasibility in a case where the meta-model-based RBDO process is employed, but also to require low expense, as compared with both conventional MLSM and non-approximate RBDO methods.  相似文献   

10.
Fast multipole DBEM analysis of fatigue crack growth   总被引:2,自引:1,他引:2  
A fast multipole method (FMM) based on complex Taylor series expansions is applied to the dual boundary element method (DBEM) for large-scale crack analysis in linear elastic fracture mechanics. Combining multipole expansions with local expansions, both the computational complexity and memory requirement are reduced to O(N), where N is the number of DOF. An incremental crack-extension analysis based on the maximum principal stress criterion and the Paris law is used to simulate the fatigue growth of numerous cracks in a 2D solid. Some examples are presented to validate the numerical scheme.  相似文献   

11.
In this paper, an adaptive refinement procedure is proposed to be used with Discrete Least Squares Meshless (DLSM) method for accurate solution of planar elasticity problems. DLSM method is a newly introduced meshless method based on the least squares concept. The method is based on the minimization of a least squares functional defined as the weighted summation of the squared residual of the governing differential equation and its boundary conditions at nodal points used to discretize the domain and its boundaries. A Moving Least Square (MLS) method is used to construct the shape function making the approach a fully least squares based approach. An error estimate and adaptive refinement strategy is proposed in this paper to increase the efficiency of the DLSM method. For this, a residual based error estimator is introduced and used to discover the region of higher errors. The proposed error estimator has the advantages of being available at the end of each analysis contributing to the efficiency of the proposed method. An enrichment method is then used by adding more nodes to the area of higher errors as indicated by the error estimator. A Voronoi diagram is used to locate the position of the nodes to be added to the current nodal configuration. Efficiency and effectiveness of the proposed procedure is examined by adaptively solving two benchmark problems. The results show the ability of the proposed strategy for accurate simulation of elasticity problems.  相似文献   

12.
    
The fast multipole method (FMM) is applied to the dual boundary element method (DBEM) for the analysis of finite solids with large numbers of microcracks. The application of FMM significantly enhances the run-time and memory storage efficiency. Combining multipole expansions with local expansions, computational complexity and memory requirement are both reduced to O(N), where N is the number of DOFs (degrees of freedom). This numerical scheme is used to compute the effective in-plane bulk modulus of 2D solids with thousands of randomly distributed microcracks. The results prove that the IDD method, the differential method, and the method proposed by Feng and Yu can give proper estimates. The effect of microcrack non-uniform distribution is evaluated, and the numerical results show that non-uniform distribution of microcracks increases the effective in-plane bulk modulus of the whole microcracked solid.  相似文献   

13.
         下载免费PDF全文
In this study, we propose to approximate the a-n relation as well as the da/dn-∆K relation, in fatigue crack propagation, by using the Moving Least Squares (MLS) method. This simple approach can avoid the internal inconsistencies caused by the celebrated Paris’ power law approximation of the da/dn-∆K relation, as well as the error caused by a simple numerical differentiation of the noisy data for a-n measurements in standard fatigue tests. Efficient, accurate and automatic simulations of fatigue crack propagation can, in general, be realized by using the currently developed MLS law as the “fatigue engine” [da/dn versus ∆K], and using a high-performance “fracture engine” [computing the K-factors] such as the Finite Element Alternating Method.
In the present paper, the “fatigue engine” based on the present MLS law, and the “fracture engine” based on the SafeFlaw computer program developed earlier by the authors, in conjunction with the COTS software ANSYS, were used for predicting the total life of arbitrarily cracked structures.
By comparing the numerical simulations with experimental tests, it is demonstrated that the current approach can give excellent predictions of the total fatigue life of a cracked structure, while the celebrated Paris’ Power Law may miscalculate the total fatigue life by a very large amount.  相似文献   

14.
The Galerkin boundary node method (GBNM) is a boundary only meshless method that combines variational formulations of boundary integral equations with the moving least-squares approximations. This paper presents the mathematical derivation of a posteriori error estimates and adaptive refinement procedures for the GBNM for 3D potential problems. Two types of error estimators are developed in detail. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two successive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the GBNM solution itself and its L2-orthogonal projection. The reliability and efficiency of both types of error estimators is established. That is, these error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization technique is introduced to accommodate the non-local property of integral operators for the needed local and computable a posteriori error indicators. Convergence analysis results of corresponding adaptive meshless procedures are also given. Numerical examples with high singularities illustrate the theoretical results and show that the proposed adaptive procedures are simple, effective and efficient.  相似文献   

15.
    
This work presents a new implementation of the boundary node method (BNM) for numerical solution of Laplace's equation. By coupling the boundary integral equations and the moving least‐squares (MLS) approximation, the BNM is a boundary‐type meshless method. However, it still uses the standard elements for boundary integration and approximation of the geometry, thus loses the advantages of the meshless methods. In our implementation, here called the boundary face method, the boundary integration is performed on boundary faces, which are represented in parametric form exactly as the boundary representation data structure in solid modeling. The integrand quantities, such as the coordinates of Gauss integration points, Jacobian and out normal are calculated directly from the faces rather than from elements. In order to deal with thin structures, a mixed variable interpolation scheme of 1‐D MLS and Lagrange Polynomial for long and narrow faces. An adaptive integration scheme for nearly singular integrals has been developed. Numerical examples show that our implementation can provide much more accurate results than the BNM, and keep reasonable accuracy in some extreme cases, such as very irregular distribution of nodes and thin shells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The meshless local boundary integral equation (MLBIE) method with an efficient technique to deal with the time variable are presented in this article to analyze the transient heat conduction in continuously nonhomogeneous functionally graded materials (FGMs). In space, the method is based on the local boundary integral equations and the moving least squares (MLS) approximation of the temperature and heat flux. In time, again the MLS approximates the equivalent Volterra integral equation derived from the heat conduction problem. It means that, the MLS is used for approximation in both time and space domains, and we avoid using the finite difference discretization or Laplace transform methods to overcome the time variable. Finally the method leads to a single generalized Sylvester equation rather than some (many) linear systems of equations. The method is computationally attractive, which is shown in couple of numerical examples for a finite strip and a hollow cylinder with an exponential spatial variation of material parameters.  相似文献   

17.
An adaptive fast multipole boundary element method (FMBEM) for general three-dimensional (3-D) potential problems is presented in this paper. This adaptive FMBEM uses an adaptive tree structure that can balance the multipole to local translations (M2L) and the direct evaluations of the near-field integrals, and thus can reduce the number of the more costly direct evaluations. Furthermore, the coefficients used in the preconditioner for the iterative solver (GMRES) are stored and used repeatedly in the direct evaluations of the near-field contributions. In this way, the computational efficiency of the adaptive FMBEM is improved significantly. The adaptive FMBEM can be applied to both the original FMBEM formulation and the new FMBEM with diagonal translations. Several numerical examples are presented to demonstrate the efficiency and accuracy of the adaptive FMBEM for studying large-scale 3-D potential problems. The adaptive FMBEM is found to be about 50% faster than the non-adaptive version of the new FMBEM in solving the model (with 558,000 elements) for porous materials studied in this paper. The computational efficiencies and accuracies of the FMBEM as compared with the finite element method (FEM) are also studied using a heat-sink model. It is found that the adaptive FMBEM is especially advantageous in modeling problems with complicated domains for which free meshes with much more finite elements would be needed with the FEM.  相似文献   

18.
This paper presents a simple method for obtaining exact lower confidence bounds for reliabilities (tail probabilities) for items whose life times follow a Weibull distribution where both the “shape” and “scale” parameters are unknown. These confidence bounds are obtained both for the censored and non-censored cases and are asymptotically efficient. They are exact even for small sample sizes in that they attain the desired confidence level precisely. The case of an additional unknown “location” or “shift” parameter is also discussed in the large sample case. Tables are given of exact and asymptotic lower confidence bounds for the reliability for sample sizes of 10, 15, 20, 30, 50 and 100 for various censoring fractions.  相似文献   

19.
This article extends previous work by the authors on the single- and multi-domain time-harmonic elastodynamic multi-level fast multipole BEM formulations to the case of weakly dissipative viscoelastic media. The underlying boundary integral equation and fast multipole formulations are formally identical to that of elastodynamics, except that the wavenumbers are complex-valued due to attenuation. Attention is focused on evaluating the multipole decomposition of the viscoelastodynamic fundamental solution. A damping-dependent modification of the selection rule for the multipole truncation parameter, required by the presence of complex wavenumbers, is proposed. It is empirically adjusted so as to maintain a constant accuracy over the damping range of interest in the approximation of the fundamental solution, and validated on numerical tests focusing on the evaluation of the latter. The proposed modification is then assessed on 3D single-region and multi-region visco-elastodynamic examples for which exact solutions are known. Finally, the multi-region formulation is applied to the problem of a wave propagating in a semi-infinite medium with a lossy semi-spherical inclusion (seismic wave in alluvial basin). These examples involve problem sizes of up to about 3×105 boundary unknowns.  相似文献   

20.
A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex notation of the kernel functions, expansions and translations in the fast multipole BEM are presented. Finally, a few numerical examples are presented to show the accuracy and efficiency of the fast multipole BEM in solving thin plate bending problems. The bending rigidity of a perforated plate is evaluated using the developed code. It is shown that the fast multipole BEM can be applied to solve plate bending problems with good accuracy. Possible improvements in the efficiency of the method are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号