首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为提高YOLOv5s目标检测算法在检测图像中小目标时的准确度,本文研究引入注意力机制来提高神经网络对于图像特征提取的能力。将三种注意力机制CBAM、CoordAtt和GAM分别与YOLOv5s相融合,并在小目标数据集上进行训练。实验的结果显示,在YOLOv5s算法中添加注意力机制时,需考虑注意力机制在网络中的添加位置、该机制与数据集任务之间是否匹配以及预训练权重的影响。  相似文献   

2.
针对道路检测目标小、模型特征融合不充分等问题,提出了一种基于注意力机制和多尺度特征融合的道路目标检测算法MFFDM。该算法将Resnext50网络与注意力模块进行融合形成新的主干特征提取网络;其次,新增具有空间位置信息的底层检测层来匹配对小物体的检测;另外,利用反卷积模块及特征纹理提取模块设计多尺度特征融合网络DEFTFN。实验表明,与FCOS算法相比,该算法在KITTI数据集上的平均精度提升了9.3%,对道路行人目标的检测精度提升明显,提升幅度达14.6%。  相似文献   

3.
曾凯  李响  陈宏君  文继锋 《软件工程》2023,(1):55-58+54
为了提升复杂多尺度目标检测任务下的分类及定位准确度,在基准的YOLOv5目标检测算法基础上,设计了四组引入注意力机制模块的改进型YOLOv5网络,并在变电站内复杂多尺度检测场景数据集上进行对比实验。实验结果表明,相较于基准YOLOv5网络,SwinTrans-YOLOv5网络的mAP指标提升达9.0%,但模型运算量高达1,061.6GFLOPS(每秒千兆次浮点运算);CA-YOLOv5网络的mAP指标提升也达到4.1%,模型运算量仅需115.8 GFLOPS。因此,在硬件算力充足的情况下使用SwinTrans-YOLOv5网络可以获得更高的检测精度,但在硬件算力不足的情况下使用CA-YOLOv5网络,则实现了检测精度和速度间较好的平衡。  相似文献   

4.
针对交通目标检测模型参数量大、检测精度低、检测速度慢、泛化性差等问题,提出一种基于GhostNet与注意力机制的YOLOv5交通目标实时检测模型.采用基于遗传算法的K-means聚类方法获取适用于车辆检测的最佳预选框;采用轻量的Ghost卷积提取目标特征,并构建基于CSP结构的C3Ghost模块,大幅度压缩模型参数量,降低计算成本,提高计算速度;在特征融合层添加Transformer block和CBAM注意力模块,来探索模型特征提取潜力以及为模型在密集对象的场景中寻找注意力区域; UA-DETRAC数据集上的消融实验和综合性能评价结果表明所提模型平均精度达到98.68%,参数量为47 M,检测速度为65 FPS,与YOLOv5相比,参数量压缩了34%,速度提升43%,平均精度提高了1.05%.  相似文献   

5.
在计算机图像处理中,注意力机制能够有效帮助深度网络更好地关注相关目标区域。为提高目标检测性能,提出多通道注意力机制;上述方法由多分通道注意力机制和扩大感受野模块组成,其中多分通道注意力机制是对原始特征图进行可学习区域划分,对不同区域分别使用通道注意力机制;扩大感受野模块是在扩大感受野的同时对独立通道进行加权,并建立全局通道关系。在不同目标检测网络中验证所提方法,网络性能均有所提高。新方法优于传统的注意力机制,在增加微小计算成本的情况下有效提高目标检测的精度。  相似文献   

6.
目前基于无人机航拍的目标检测技术广泛应用于军事和民用领域,但因其存在成像距离远、高空拍摄图像模糊和目标信息占比小等问题,目标检测准确率不高。针对这一问题,提出一种基于YOLOv5的改进算法。该算法首先在数据增强方面对原始图像进行加雾处理,提高其在雾天的鲁棒性;其次通过融合CBAM模块,来增强不同通道和空间的重要性;再者将原算法中的SPP更换为ASPP,以减小池化操作对特征信息的影响;最后在FPN结构中增加一层检测头,用于更细粒度的检测目标。以YOLOv5s为Baseline,实验表明,改进后的算法比原算法的mAP_0.5提高了6.9%,可以有效应用于航拍小目标的检测。  相似文献   

7.
作为一个多任务的学习过程,目标检测相较于分类网络需要更好的特征.基于多尺度特征对不同尺度的目标进行预测的检测器性能已经大大超过了基于单一尺度特征的检测器.同时,特征金字塔结构被用于构建所有尺度的高级语义特征图,从而进一步提高了检测器的性能.但是,这样的特征图没有充分考虑到上下文信息对语义的补充作用.在SSD基准网络的基...  相似文献   

8.
航拍图像目标检测存在多尺度目标检测精度低、检测速度慢、漏检和误检严重等问题.针对这些问题,提出一种融合卷积注意力机制和轻量化网络的目标检测算法(pro-YOLOv4),并应用于多尺度航拍图像目标检测.首先,利用K-means聚类算法对航拍数据集进行聚类分析并优化锚框参数,以提高对目标检测的有效性;其次,采用轻量级网络结构,精简网络复杂度,提高检测速度;最后,引入卷积注意力模块来解决复杂场景对于航拍目标检测的干扰,从而有效降低误检率和漏检率.在航拍数据集RSOD和NWPU VHR-10上进行实验对比,实验结果表明,pro-YOLOv4检测效果较YOLOv4有明显提升,平均检测精度分别提高了3.42%和3.98%.该算法不仅对多尺度目标均表现出较好检测性能,还降低了目标漏检率,并具有较好的鲁棒性和泛化能力.  相似文献   

9.
针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.  相似文献   

10.
针对在航拍图像检测任务中,物体和整体图像尺寸都比较小,尺度特征不一和细节信息不清晰,会造成漏检和误检等问题,提出了一种改进小目标检测算法CA-YOLOv8。设计了一种通道特征部分卷积模块CFPConv(channel feature partial convolution),基于此重新构造了C2f中的Bottleneck结构,命名为CFP_C2f,从而替换YOLOv8头部和颈部的部分C2f模块,增强有效通道特征权值,提升多尺度细节特征的获取能力。嵌入一种用以提升上下文聚合能力的模块CAM(context aggregated module),优化特征通道的响应,强化对深层特征的细节感知能力。添加NWD损失函数,将其与CIoU结合作为定位回归损失函数,降低位置偏差的敏感性。充分运用多重注意力机制的优势,把原有检测头替换为DyHead(dynamic head)。在VisDrone2019数据集的实验中,改进的算法较YOLOv8s原模型参数量降低了33.3%,检测精度mAP50值和mAP50:95分别提升了8.7和5.7个百分点,表现出良好的性能,验证了其有效性。  相似文献   

11.
针对目标检测模型在人物跌倒时易漏检、鲁棒性和泛化能力差等问题,提出一种基于改进YOLOv5s的跌倒人物目标检测方法 YOLOv5s-FPD。首先,对Le2i跌倒数据集使用多种方式扩充后用于模型训练,增强模型鲁棒性和泛化能力;其次,使用MobileNetV3作为主干网络来进行特征提取,协调并平衡模型的轻量化和准确性关系;然后,利用BiFPN改善模型多尺度特征融合能力,提高了融合速度和效率,并使用CBAM轻量级注意力机制实现注意力对通道和空间的双重关注,增强了注意力机制对模型准确性地提升效果;最后,引入Focal Loss损失评价从而更注重挖掘困难样本特征,改善正负样本失衡的问题。实验结果表明,在Le2i跌倒数据集上YOLOv5s-FPD模型比原YOLOv5s模型,在精确度、F1分数、检测速度分别提高了2.91%,0.03和8.7 FPS,验证了该方法的有效性。  相似文献   

12.
针对地理空间遥感图像中检测目标存在多尺度特性、形态多变以及小目标判别特征过少等造成检测识别精度不高的问题,提出了基于多尺度下遥感小目标多头注意力检测算法YOLO-StrVB。对网络结构进行重构,搭建多尺度网络模型,增加目标检测层,提高特征提取网络下遥感小目标模型不同尺度下的检测能力;加入双向特征金字塔网络(Bi-FPN)进行多尺度特征融合,提高双向跨尺度连接和加权特征融合;在YOLOv5网络末端融合Swin Transformer多头注意力机制块,提升感受野适应目标识别任务的多尺度融合关系,优化主干网络;使用Varifocal loss对网络进行训练,提升遥感密集检测小目标的存在置信度和定位精度,并选用CIoU作为边界框回归的损失函数,提高感知分类得分(IACS)的边框回归精度。通过在遥感目标数据集NWPU VHR-10上的实验验证,对比YOLOv5原模型的mAP提高了3.05个百分点,能有效提高小目标的检测精度,达到了对地理空间遥感图像中小目标检测的鲁棒性。  相似文献   

13.
本文针对图像中小目标难以检测的问题,提出了一种基于YOLOv5的改进模型.在主干网络中,加入CBAM注意力模块增强网络特征提取能力;在颈部网络部分,使用BiFPN结构替换PANet结构,强化底层特征利用;在检测头部分,增加高分辨率检测头,改善对于微小目标的检测能力.本文算法在人脸瑕疵数据集和无人机数据集VisDrone2019两份数据集上均进行了多次对比实验,结果表明本文算法可以有效地检测小目标.  相似文献   

14.
为了降低遥感图像中尺寸较大或长宽比变化极端等类型目标对检测精度的不利影响,提出一种基于YOLOv5的改进算法。首先,设计多尺度特征融合模块,通过引入不同膨胀率的残差膨胀卷积块以获得更大感受野,提高对长宽比变化极端目标的检测能力;其次,引入全局-局部注意力,通过分解大核注意力以获得空间和通道维度的长期依赖性和适应性,实现动态提取丰富的全局上下文信息,提高网络对大尺寸目标的检测性能。在DOTA数据集上的消融实验证明了该算法的有效性,mAP达到77.05%,较改进前的模型提升了1.66%,亦优于主流算法,有效改善了遥感图像中目标尺寸过大或长宽比变化极端带来的问题。  相似文献   

15.
针对遥感图像中背景复杂度高、目标尺寸多样所导致的目标检测精度低的问题,提出一种基于改进 YOLOv5的遥感图像目标检测算法。该算法将具有Transformer风格的ConvNeXt网络作为主干网络,以克服卷积神经网络(CNN)结构的局限性,捕获更多全局信息。引入 SimAM 注意力机制在不增加网络参数的情况下,推断出特征图的3D注意力权值,提高网络的稳定性以及抗干扰能力。同时采用全局显式集中调节方案的集中特征金字塔(CFP),捕获全局长距离依赖关系以及遥感图像的局部关键区域信息。将本文提出的算法在 RSOD 数据集上进行消融实验,结果表明,本文提出的算法能够显著提高遥感图像目标检测的平均准确率。  相似文献   

16.
小目标检测在计算机视觉领域具有重要意义,但现有方法在应对小目标的尺度变化、目标密集和无规则排列等挑战时经常出现漏检和误检的问题。为解决这些问题,提出基于改进YOLOv5算法的ATO-YOLO。为提升检测模型的特征表达能力,提出一种结合注意力机制的自适应特征提取模块(adaptive feature extraction,AFE),通过动态调整权重分配突出关键目标的特征表示,提高目标检测任务在不同场景下的准确性和鲁棒性。设计一种三重特征融合机制(triple feature fusion,TFF),能够在不同尺度下充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对小目标的检测效果。引入一种输出重构模块(output reconstruction,ORS),通过去除大目标检测层并增加小目标检测层,实现精确定位和识别小目标,并且相对于原模型复杂度更低,检测速度更快。实验结果表明,ATO-YOLO算法在VisDrone数据集上的mAP@0.5达到了38.2%,较原YOLOv5提升了6.1个百分点,且FPS较改进前提升了4.4%,能够快速准确地对小目标进行检测。  相似文献   

17.
针对遥感图像中背景复杂度高、目标尺寸多样和小目标存在过多所导致的目标检测精度较低的问题,提出一种改进YOLOv5的遥感图像目标检测算法。该算法在主干网络引入通道-全局注意力机制(CGAM)以增强对不同尺度目标的特征提取能力和抑制冗余信息的干扰。引入密集上采样卷积(DUC)模块扩张低分辨率卷积特征图,有效增强不同卷积特征图的融合效果。将改进算法应用于公开遥感数据集RSOD中,改进YOLOv5算法平均精度AP值达到78.5%,较原算法提升了3.1个百分点。实验结果证明,改进后的算法能有效提高遥感图像目标检测精度。  相似文献   

18.
王凯诚    鲁华祥      龚国良  陈刚 《智能系统学报》2020,15(5):956-963
针对目前主流的基于全卷积神经网络的显著性目标检测方法,受限于卷积层感受野大小,低层特征缺少全局性的信息,而高层特征由于多次池化操作分辨率较低,无法准确地预测目标边缘等细节的问题,本文提出了基于注意力的显著性目标检测方法。在ResNet-50网络中加入注意力精炼模块,利用训练样本的显著真值图对空间注意力进行有监督的学习,使得不同像素位置的相关性更准确。通过深度融合多尺度的特征,用低层特征优化高层特征,精修网络的预测结果使其更加准确。在DUT-OMRON和ECSSD数据集上的测试结果显示,本文方法能显著提升检测效果,F-measure和平均绝对误差都优于其他同类方法。  相似文献   

19.
针对现有算法的多尺度特征融合效果不理想和全局信息利用不充分的问题,提出一种基于多尺度优化和全局注意力的显著目标检测模型.利用特征增强模块对从骨干网络VGG-16中提取出来的粗糙特征进行增强,提升特征的显著性表达能力,对不同层次特征融合得到高层级和低层级特征;设计全局注意力模块,利用空洞空间卷积池化金字塔ASPP模块提取...  相似文献   

20.
针对遥感影像目标检测中复杂背景的干扰,小目标检测效果差等问题,提出一种改进YOLOv5(you only look once v5)的遥感影像目标检测模型。针对卷积神经网络下采样导致的特征图中包含的小目标信息较少或消失的问题,引入特征复用以增加特征图中的小目标特征信息;在特征融合阶段时使用EMFFN(efficient multi-scale feature fusion network)的特征融合网络代替原有的PANet(path aggregation network),通过添加跳跃连接以及跨层连接高效融合不同尺度的特征图信息;为了应对复杂背景带来的检测效果变差的问题,提出了一种包含通道与像素的双向特征注意力机制(bidirectional feature attention mechanism,BFAM),以提高模型在复杂背景下的检测效果。实验结果表明,改进后的YOLOv5模型在DIOR数据集与RSOD数据集中分别取得了87.8%和96.6%的检测精度,相较原算法分别提高5.2和1.6个百分点,有效提高了复杂背景下的小目标检测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号