共查询到20条相似文献,搜索用时 0 毫秒
1.
视觉自动问答技术是一个新兴的多模态学习任务,它联系了图像内容理解和文本语义推理,针对图像和问题给出对应的回答.该技术涉及多种模态交互,对视觉感知和文本语义学习有较高的要求,受到了广泛的关注.然而,视觉自动问答模型的训练对数据集的要求较高.它需要多种多样的问题模式和大量的相似场景不同答案的问题答案标注,以保证模型的鲁棒性和不同模态下的泛化能力.而标注视觉自动问答数据需要花费大量的人力物力,高昂的成本成为制约该领域发展的瓶颈.针对这个问题,本文提出了基于跨模态特征对比学习的视觉问答主动学习方法(CCRL).该方法从尽可能覆盖更多的问题类型和尽可能获取更平衡的问题分布两方面出发,设计了视觉问题匹配评价(VQME)模块和视觉答案不确定度度量(VAUE)模块.视觉问题评价模块使用了互信息和对比预测编码作为自监督学习的约束,学习视觉模态和问题模式的匹配关系.视觉答案不确定性模块引入了标注状态学习模块,自适应地选择匹配的问题模式并学习跨模态问答语义关联,通过答案项的概率分布评估样本不确定度,寻找最有价值的未标注样本进行标注.在实验部分,本文在视觉问答数据集VQA-v2上将CCRL和其他最新的主动学习... 相似文献
2.
视觉问答(visual question answering,VQA)是深度学习领域的一个新挑战,需要模型同时根据问题的语义和图片的内容进行推理并给出正确答案。针对视觉问答图片输入的多样性,设计了一种由两层注意力机制堆叠组成的层次注意力机制,帮助模型定位图片中与问题相关的信息,其中第一层注意力机制使用目标检测网络提取图片中物体的特征,第二层注意力机制引入问题特征。同时改进了现有的特征融合方式,消除对输入特征尺寸的限制。VQA数据集的测试结果显示,层次注意力机制使计数类问题的回答准确率提升了4%~5%,其他类型的问题回答准确率也有小幅提升。 相似文献
3.
视觉问答是一个具有挑战性的问题,需要结合计算机视觉和自然语言处理的概念。大多数现有的方法使用双流方式,先分别计算图像和问题特征,然后再采取不同的技术和策略进行融合。目前,尚缺乏能够直接捕获问题语义和图像空间关系的更高层次的表示方法。提出一种基于图结构的级联注意力学习模型,该模型结合了图学习模块(学习输入图像问题的特定图表示)、图卷积层和级联注意力层,目的是捕捉不同候选框区域图像的空间信息,以及其与问题之间的更高层次的关系。在大规模数据集VQA v2.0上进行了实验,结果表明,跟主流算法相比较,是/否、计数和其他类型问题的回答准确率均有明显提升,总体准确率达到了68.34%,从而验证了提出模型的有效性。 相似文献
4.
针对现有基于注意力机制的多模态学习,对文字上下文之间的自我联系和图像目标区域的空间位置关系进行了深入研究。在分析现有注意力网络的基础上,提出使用自注意力模块(self-attention,SA)和空间推理注意力模块(spatial reasoning attention,SRA)对文本信息和图像目标进行映射,最终得到融合特征输出。相较于其他注意力机制,SA和SRA可以更好地将文本信息匹配图像目标区域。模型在VQAv2数据集上进行训练和验证,并在VQAv2数据集上达到了64.01%的准确率。 相似文献
5.
6.
大数据时代,随着多源异构数据的爆炸式增长,多模态数据融合问题备受研究者的关注,其中视觉问答因需要图文协同处理而成为当前多模态数据融合研究的热点。视觉问答任务主要是对图像和文本两类模态数据进行特征关联与融合表示,最后进行推理学习给出结论。传统的视觉问答模型在特征融合时容易缺失模态关键信息,且大多数方法停留在数据之间浅层的特征关联表示学习,较少考虑深层的语义特征融合。针对上述问题,提出了一种基于图文特征跨模态深度交互的视觉问答模型。该模型利用卷积神经网络和长短时记忆网络分别获取图像和文本两种模态数据特征,然后利用元注意力单元组合建立的新型深度注意力学习网络,实现图文模态内部与模态之间的注意力特征交互式学习,最后对学习特征进行多模态融合表示并进行推理预测输出。在VQA-v2.0数据集上进行了模型实验和测试,结果表明,与基线模型相比,所提模型的性能有明显提升。 相似文献
7.
8.
目的 现有大多数视觉问答模型均采用自上而下的视觉注意力机制,对图像内容无加权统一处理,无法更好地表征图像信息,且因为缺乏长期记忆模块,无法对信息进行长时间记忆存储,在推理答案过程中会造成有效信息丢失,从而预测出错误答案。为此,提出一种结合自底向上注意力机制和记忆网络的视觉问答模型,通过增强对图像内容的表示和记忆,提高视觉问答的准确率。方法 预训练一个目标检测模型提取图像中的目标和显著性区域作为图像特征,联合问题表示输入到记忆网络,记忆网络根据问题检索输入图像特征中的有用信息,并结合输入图像信息和问题表示进行多次迭代、更新,以生成最终的信息表示,最后融合记忆网络记忆的最终信息和问题表示,推测出正确答案。结果 在公开的大规模数据集VQA (visual question answering)v2.0上与现有主流算法进行比较实验和消融实验,结果表明,提出的模型在视觉问答任务中的准确率有显著提升,总体准确率为64.0%。与MCB(multimodal compact bilinear)算法相比,总体准确率提升了1.7%;与性能较好的VQA machine算法相比,总体准确率提升了1%,其中回答是/否、计数和其他类型问题的准确率分别提升了1.1%、3.4%和0.6%。整体性能优于其他对比算法,验证了提出算法的有效性。结论 本文提出的结合自底向上注意力机制和记忆网络的视觉问答模型,更符合人类的视觉注意力机制,并且在推理答案的过程中减少了信息丢失,有效提升了视觉问答的准确率。 相似文献
9.
视觉问答(VQA)是计算机视觉和自然语言处理领域中典型的多模态问题,然而传统VQA模型忽略了双模态中语义信息的动态关系和不同区域间丰富的空间结构。提出一种新的多模块协同注意力模型,对视觉场景中对象间关系的动态交互和文本上下文表示进行充分理解,根据图注意力机制建模不同类型对象间关系,学习问题的自适应关系表示,将问题特征和带关系属性的视觉关系通过协同注意编码,加强问题词与对应图像区域间的依赖性,通过注意力增强模块提升模型的拟合能力。在开放数据集VQA 2.0和VQA-CP v2上的实验结果表明,该模型在“总体”、“是/否”、“计数”和“其他”类别问题上的精确度明显优于DA-NTN、ReGAT和ODA-GCN等对比方法,可有效提升视觉问答的准确率。 相似文献
10.
Transformer的解码器(Transformer_decoder)模型已被广泛应用于图像描述任务中,其中自注意力机制(Self Attention)通过捕获细粒度的特征来实现更深层次的图像理解。本文对Self Attention机制进行2方面改进,包括视觉增强注意力机制(Vision-Boosted Attention, VBA)和相对位置注意力机制(Relative-Position Attention, RPA)。视觉增强注意力机制为Transformer_decoder添加VBA层,将视觉特征作为辅助信息引入Self Attention模型中,指导解码器模型生成与图像内容更匹配的描述语义。相对位置注意力机制在Self Attention的基础上,引入可训练的相对位置参数,为输入序列添加词与词之间的相对位置关系。基于COCO2014进行实验,结果表明VBA和RPA这2种注意力机制对图像描述任务都有一定改进,且2种注意力机制相结合的解码器模型有更好的语义表述效果。 相似文献
11.
刘传 《计算机与数字工程》2023,(4):860-865
经典的视觉注意力模型缺乏视觉对象间空间关系的推理能力,忽略了图像和问题文本之间的密集语义交互,导致在预测答案过程中对噪声的处理能力不足。针对上述问题,提出了一种基于门控图卷积网络和协同注意力的视觉问答模型。该模型基于图像中视觉对象之间的相对空间位置构建空间关系图;同时以问题为引导,在图卷积网络的基础上增加门控机制,能够动态控制具有不同空间关系的邻居对节点的贡献程度;然后将问题的词特征和带有空间关系感知能力的视觉特征输入双向引导的协同注意力模块,共同学习它们之间的密集语义交互。在VQA2.0数据集进行实验,结果表明:该模型具有较强的显式关系推理能力,在test-std测试集的总体准确率为70.90%,优于该数据集上的经典模型,有效地提升了视觉问答的准确率。 相似文献
12.
针对输入的图像视觉信息不能在每一步解码过程中动态调整,同时为了提高图像语义描述模型的精度和泛化能力,提出了一种结合引导解码和视觉注意力机制的双层长短时记忆(long short term memory,LSTM)网络的图像语义描述模型。将提取到的图像的视觉和目标特征通过一个引导网络建模后送入LSTM网络的每一时刻,实现端到端的训练过程;同时设计了基于图像通道特征的视觉注意力机制,提高了模型对图像细节部分的描述。利用MSCOCO和Flickr30k数据集对模型进行了训练和测试,结果显示模型性能在不同的评价指标上都得到了提升。 相似文献
13.
目的 现有视觉问答模型的研究主要从注意力机制和多模态融合角度出发,未能对图像场景中对象之间的语义联系显式建模,且较少突出对象的空间位置关系,导致空间关系推理能力欠佳。对此,本文针对需要空间关系推理的视觉问答问题,提出利用视觉对象之间空间关系属性结构化建模图像,构建问题引导的空间关系图推理视觉问答模型。方法 利用显著性注意力,用Faster R-CNN(region-based convolutional neural network)提取图像中显著的视觉对象和视觉特征;对图像中的视觉对象及其空间关系结构化建模为空间关系图;利用问题引导的聚焦式注意力进行基于问题的空间关系推理。聚焦式注意力分为节点注意力和边注意力,分别用于发现与问题相关的视觉对象和空间关系;利用节点注意力和边注意力权重构造门控图推理网络,通过门控图推理网络的信息传递机制和控制特征信息的聚合,获得节点的深度交互信息,学习得到具有空间感知的视觉特征表示,达到基于问题的空间关系推理;将具有空间关系感知的图像特征和问题特征进行多模态融合,预测出正确答案。结果 模型在VQA(visual question answering)v2... 相似文献
14.
随着深度学习在计算机视觉、自然语言处理领域取得的长足进展,现有方法已经能准确理解视觉对象和自然语言的语义,并在此基础上开展跨媒体数据表达与交互研究.近年来,视觉问答(visual question answering, VQA)是跨媒体表达与交互方向上的研究热点问题.视觉问答旨在让计算机理解图像内容后根据自然语言输入的查询进行自动回答.围绕视觉问答问题,从概念、模型、数据集等方面对近年来的研究进展进行综述,同时探讨现有工作存在的不足;最后从方法论、应用和平台等多方面对视觉问答未来的研究方向进行了展望. 相似文献
15.
随着深度学习在医疗领域的快速发展,医学视觉问答(Med-VQA)吸引了研究人员的广泛关注.现有的Med-VQA方法大都使用权重参数共享的同一特征提取网络对多模态医学影像进行特征提取,在一定程度上忽略了不同模态医学影像的差异性特征,导致对特定模态特征提取时引入其它模态的噪声特征,使得模型难以关注到不同模态医学影像中的关键特征.针对上述问题,本文提出一种基于多模态特征提取的医学视觉问答方法.首先,对医学影像进行模态识别,根据模态标签指导输入参数不共享的特征提取网络以获得不同模态影像的差异性特征;然后,设计了一种面向Med-VQA的卷积降噪模块以降低医学影像不同模态特征的噪声信息;最后,采用空间与通道注意力模块进一步增强不同模态差异性特征的关注度.在Med-VQA公共数据集Slake上得到的实验结果表明,本文提出方法能有效提高Med-VQA的准确率. 相似文献
16.
17.
目前, 深度卷积神经网络(Convolutional neural network, CNN)已主导了单图像超分辨率(Single image super-resolution, SISR)技术的研究, 并取得了很大进展. 但是, SISR仍是一个开放性问题, 重建的超分辨率(Super-resolution, SR)图像往往会出现模糊、纹理细节丢失和失真等问题. 提出一个新的逐像素对比损失, 在一个局部区域中, 使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution, HR)图像的像素, 并远离局部区域中的其他像素, 可改进SR图像的保真度和视觉质量. 提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network, PRFFN). 主要贡献有: 1)提出一个通用的基于对比学习的逐像素损失函数, 能够改进SR图像的保真度和视觉质量; 2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block, MRCAB), 可以更好地提取和利用多尺度特征信息; 3)提出一个空间注意力融合块(Spatial attention fuse block, SAFB), 可以更好地利用邻近空间特征的相关性. 实验结果表明, PRFFN显著优于其他代表性方法. 相似文献
18.
针对目前基于全局特征的图像描述模型存在细节语义信息不足的问题,提出结合全局和局部特征的图像中文描述模型.该模型采用编码器-解码器框架,在编码阶段,分别使用残差网络(residual networks,ResNet)和Faster R-CNN提取图像的全局特征和局部特征,提高模型对不同尺度图像特征的利用.采用嵌入了残差连接结构和视觉注意力结构的双向门控循环单元(bi-directional gated recurrent unit,BiGRU)作为解码器(BiGRU with residual connection and attention,BiGRU-RA).模型可以自适应分配图像特征和文本权重,改善图像特征区域和上下文信息的映射关系.此外,加入基于强化学习的策略梯度对模型的损失函数进行改进,直接对评价指标CIDEr进行优化.在AI Challenger全球挑战赛图像中文描述数据集上进行训练和实验,实验结果表明,该模型获得更高的评分,生成的描述语句更准确、更详细. 相似文献
19.
文本阅读能力差和视觉推理能力不足是现有视觉问答(visual question answering, VQA)模型效果不好的主要原因,针对以上问题,设计了一个基于图神经网络的多模态推理(multi-modal reasoning graph neural network, MRGNN)模型。利用图像中多种形式的信息帮助理解场景文本内容,将场景文本图片分别预处理成视觉对象图和文本图的形式,并且在问题自注意力模块下过滤多余的信息;使用加入注意力的聚合器完善子图之间相互的节点特征,从而融合不同模态之间的信息,更新后的节点利用不同模态的上下文信息为答疑模块提供了更好的功能。在ST-VQA和TextVQA数据集上验证了有效性,实验结果表明,相比较此任务的一些其他模型,MRGNN模型在此任务上有明显的提升。 相似文献