首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为了研究工艺孔对大截面部分包覆钢-混凝土组合梁(大截面PEC梁)受弯性能的影响,对5根不同构造的大截面PEC梁进行了静力试验,研究了两点加载下主次梁腹板开洞方式对大截面PEC梁试件受弯性能、延性、破坏模式等的影响规律。结果表明:静力荷载作用下,各个试件均表现出良好的延性,腹部开孔对试件承载力和截面刚度有一定的削弱作用。型钢主钢件的应变与混凝土的应变沿截面高度方向均大致呈线性变化,符合平截面假定。按《部分包覆钢-混凝土组合结构技术规程》(T/CECS 719—2020)计算得到的开工艺孔的大截面PEC梁抗弯承载力与试验值误差较小,受尺寸效应影响不大,所采用计算公式安全可靠。  相似文献   

2.
王海 《特种结构》2021,(4):12-16
阐述部分包覆钢-混凝土组合梁(Partially Encased Composite Beams,简称PEC梁)正截面受弯、斜截面受剪、挠度和裂缝宽度的设计计算方法,探讨PEC梁作为水平受力构件应用于大跨度装配式屋盖的连接做法.结合SAP2000的计算结果,研究包覆混凝土种类、强度等级、容重对简支PEC梁跨中弯矩、挠度...  相似文献   

3.
肖锦  李杰  陈以一 《结构工程师》2020,36(2):149-156
研究T形截面部分包覆钢-混凝土组合梁(简称PEC梁)的抗弯刚度及承载力,对两根T形截面PEC梁进行静力加载试验。试验结果表明:竖向荷载作用下T形截面PEC梁具有良好的延性和变形能力,达到极限荷载时,型钢受拉翼缘和腹部纵向受拉钢筋均进入屈服状态,型钢受压翼缘未发生局部屈曲。腹部混凝土与钢梁间的滑移量较小,可忽略不计。在试验的基础上,推荐准确实用的T形截面PEC梁抗弯刚度及承载力计算公式。  相似文献   

4.
为研究预应力混凝土梁-钢骨变截面劲性柱节点的破坏特征及受力性能,进行了4个模型试件的低周反复荷载试验。观察了各节点的受力过程及破坏形态,并分析了试件的荷载-位移滞回曲线、骨架曲线、承载能力和延性等力学特性。结果表明:预应力混凝土梁-钢骨变截面劲性柱节点典型破坏形态是梁端弯剪破坏,该类节点的延性与混凝土梁柱节点相似,位移延性系数为2.0,柱内钢骨可提高节点的承载能力及刚度;柱内钢骨变截面可有效改善节点的延性性能,而对承载能力没有影响;节点处混凝土的浇筑质量对节点的整体受力性能影响较大。最后对该类节点给出了设计及施工建议。试验研究成果可为预应力混凝土梁-钢骨变截面劲性柱节点工程研究及应用提供参考。  相似文献   

5.
为了研究一种新型钢-混凝土组合暗梁的受力性能,并考察型钢截面尺寸对组合暗梁抗弯刚度和受弯承载力的影响,对2根简支钢-混凝土组合暗梁进行试验研究。试验结果表明:钢-混凝土组合暗梁整体工作性能良好,型钢与混凝土之间的相对滑移很小,可忽略不计。极限破坏状态时,组合暗梁跨中截面的挠度很大,说明组合暗梁具有良好的延性。此外,型钢的截面尺寸对钢-混凝土组合暗梁的抗弯刚度和受弯承载力有显著的影响。在试验研究的基础上,提出了钢-混凝土组合暗梁抗弯刚度和塑性受弯承载力的计算方法,理论值与试验值吻合很好。  相似文献   

6.
为研究部分包覆钢-混凝土钢筋桁架空腹组合梁受弯性能,以组合梁截面高度、主钢件翼缘厚度和腹板空腹率为变化参数,共设计4根试件并进行四点弯曲试验。通过对破坏现象、荷载-跨中挠度曲线、混凝土与主钢件应变、承载力与变形等的分析,研究了组合梁的截面高度、主钢件的翼缘厚度和腹板空腹率对部分包覆钢-混凝土钢筋桁架空腹梁受弯性能的影响规律。研究表明:所有试件均发生受弯破坏,且延性较好;荷载-跨中挠度曲线呈现弹性工作段和弹塑性工作段,跨中截面主钢件与混凝土应变基本满足平截面假定;组合梁截面高度由400 mm增加到500 mm,试件受弯承载力提高29.3%;主钢件翼缘厚度由10 mm减小到8 mm,试件受弯承载力减小25.9%;腹板空腹率对受弯承载力影响不大。基于试验现象和基本假定,推导了部分包覆钢-混凝土钢筋桁架空腹梁的受弯承载力计算式,其计算结果与试验结果吻合较好。  相似文献   

7.
为了充分发挥预制装配式型钢混凝土梁预制部分的力学性能,对6根矩形截面型钢混凝土叠合梁底部预制构件进行了静力试验,分析其破坏过程、荷载-挠度曲线、型钢和混凝土的应变,研究混凝土强度、剪跨比和型钢类型对底部预制构件延性和承载力的影响。试验结果表明:剪跨比对试件梁破坏形态和承载力影响较大;混凝土强度对试件梁的延性和承载力影响较小;配置蜂窝钢的试件承载力显著提高,但延性较差;对两根受弯破坏试件进行截面受弯承载力分析,其计算结果与试验结果吻合较好。  相似文献   

8.
为研究不同连接构造的部分包覆钢-混凝土组合梁柱节点(PEC梁柱节点)的抗震性能,对2个PEC梁柱节点试件进行了拟静力加载试验,研究了低周往复荷载作用下PEC梁柱节点试件的破坏现象、滞回曲线、骨架曲线、延性、耗能能力和刚度退化等抗震性能。结果表明:强轴连接PEC梁柱节点的滞回曲线呈梭形和弓形,在达到极限承载力后仍能保持一定的延性和耗能能力;弱轴连接PEC梁柱节点牛腿与梁间的焊缝处发生破坏,未展现出预期的耗能能力,PEC梁仍在弹塑性状态,没有达到极限状态;PEC梁柱节点核心区混凝土替换为加劲肋板后,试件仍具有较好的承载力、延性和耗能能力,刚度退化规律无明显变化,且强轴连接节点与弱轴连接节点刚度变化规律基本一致;PEC柱牛腿设计过短会导致焊缝连接处断裂,试件延性和耗能能力得不到发挥,剩余刚度较大。  相似文献   

9.
进行了2个截面高度不同的部分包覆钢-混凝土组合梁(简称PEC梁)的往复弯剪加载试验,并结合前人试验数据,对PEC梁的滞回性能进行研究。研究结果表明:在低周弯剪往复荷载作用下,PEC梁的破坏模式为端部截面钢翼缘弹塑性屈曲后拉断、钢腹板拉断并伴随着混凝土压溃;PEC梁的抗弯承载力试验值比标准T/CECS 719—2020推荐的全截面塑性方法计算得到的理论值大了10%~30%,PEC梁的实测抗剪承载力明显高于当前理论计算值;混凝土和连杆对主钢件翼缘和腹板的屈曲抑制效果好,在钢翼缘宽厚比和连杆间距明显超过T/CECS 719—2020限定范围的情况下,主钢件依然达到全截面塑性,钢材强度得到充分利用;试验的2个试件的滞回曲线饱满,延性系数为4~6.8,且截面高度大的试件的延性系数更大,2个试件在屈服后各次循环的平均耗能系数均为2.2左右,表明PEC梁抗震性能较好。  相似文献   

10.
为研究后浇段设置在次梁端与主梁侧面之间、叠合次梁预制部分纵筋采用套筒挤压搭接连接的叠合次梁-主梁连接节点的受力性能,进行了1个端节点和1个中节点试件在次梁悬臂端竖向荷载作用下的静力试验。研究结果表明:次梁受压、受拉纵筋套筒挤压搭接接头可有效传力,套筒没有出现裂纹,钢筋没有发生滑移;次梁预制混凝土与后浇混凝土结合面未见破坏,次梁的破坏形态为固端一倍梁高范围内类似深梁的斜截面弯曲破坏,可以采用“拉-压杆”模型解释次梁的受力机理、截面应变分布;次梁的实测承载力与《混凝土结构设计规范》正截面受弯承载力预测值的比值平均为1.37,与“拉 压杆”模型承载力计算值的比值平均为1.09。  相似文献   

11.
为研究高钛重矿渣混凝土的结构性能,制备C50高钛重矿渣混凝土和C50普通混凝土梁,探讨两种混凝土梁截面的受弯性能。实验结果表明:高钛重矿渣混凝土梁截面平均应变符合平截面假定;其受力过程经历了弹性阶段、带裂缝工作阶段及破坏阶段,和普通混凝土梁相似;其截面受弯承载力及延性均优于普通混凝土梁,延性系数提高15.5%;在极限承载力状态下裂缝宽度为普通混凝土的2.7倍。  相似文献   

12.
为研究装配式部分包裹混凝土(PEC)组合梁的受力性能,完成了12个试件的单向往复荷载试验,研究了剪跨比、混凝土厚度、对拉螺栓设置等对承载性能与变形能力的影响。研究结果表明:随着剪跨比的增大,试件的破坏形态由剪切破坏向弯曲破坏发展;在试验加载后期,部分试件出现腹板两侧混凝土破坏不对称现象,导致试件承受弯矩和剪力的同时,还受到了扭矩的作用;对拉螺栓不但能够提高型钢对混凝土的约束效应,防止受压钢翼缘的局部屈曲,而且能够发挥抗剪连接作用,保证型钢与混凝土的协同工作;对于小剪跨比试件,混凝土厚度对承载力的影响较大;混凝土厚度对正截面受弯承载力的影响则相对较小,因此大剪跨比试件的承载力受混凝土厚度的影响相对较小。根据叠加原理,提出了装配式PEC组合梁的受剪承载力计算公式;根据平截面假定,提出了全截面塑性状态下的装配式PEC组合梁的受弯承载力计算方法。提出了三折线模型,建立了Vm-Mm的归一化关系。  相似文献   

13.
采用有限元软件ABAQUS对层布式钢纤维混凝土梁三点受弯情况下荷载-挠度关系进行了数值模拟,计算结果与相关试验结果符合良好.数值试验结果表明,层布式钢纤维对混凝七梁的弹性阶段受力没有显著的影响,但可以明显提高混凝土梁的极限承载力.层布式钢纤维混凝土梁弯曲破坏模式明显区别干素混凝土梁,表现出明显的延性破坏特征.  相似文献   

14.
提出了内置扩大正、斜向十字形截面型钢混凝土柱-工字钢型钢混凝土(SRC)梁节点的构造方式。通过对4个内置扩大正十字形和斜向十字形截面的型钢混凝土柱-SRC梁节点试件和1个内置普通十字形截面型钢混凝土柱-SRC梁节点试件的低周反复荷载试验,研究了试件的破坏特征、滞回曲线、骨架曲线、剪切变形和钢材应变,分析了配钢形式、加载角度和构造措施(直接焊接、竖向隔板连接)对节点受力性能的影响,并在此基础上对节点核心区受剪承载力进行了计算。试验结果表明:上述两种新型截面型钢混凝土梁柱节点均发生节点区剪切破坏,达到极限状态时,节点区箍筋及型钢腹板应力均达到屈服强度,试件型钢及翼缘框内混凝土仍能承担较大荷载,并趋于稳定;新型SRC梁柱节点核心区剪力-剪切角滞回曲线饱满,无捏缩现象,其受剪承载力比相同破坏模式的普通型钢混凝土梁柱节点试件大;柱内采用斜向布置十字型钢以及梁柱正交时,节点试件的剪切承载力更大,所提出的两种构造措施对节点承载能力影响不大。  相似文献   

15.
对3根足尺外包冷弯U形钢-混凝土T形组合梁进行受弯性能试验,获得试件的荷载-挠度曲线、应变沿梁跨中截面高度分布模式、钢板与混凝土间的滑移分布特征以及梁的破坏形态,并用有限元软件ABAQUS对组合梁进行了模拟,采用变参的分析方法研究了腹板混凝土和栓钉间距对组合梁性能的影响特征与变化规律。试验结果表明,组合梁的破坏形态为正截面弯曲受压破坏,外包钢未发生明显鼓曲及掀起变形,组合梁具有较高的安全储备、良好的延性和经济性。有限元分析结果表明,有限元建模分析方法准确可靠;腹板混凝土的存在可使组合梁极限承载力提高20%;随着栓钉间距的增大,刚度和极限承载力均减小,组合梁的破坏模式由正截面弯曲破坏转为纵向滑移破坏。  相似文献   

16.
通过4个高强方钢管高强混凝土构件的纯弯性能试验,得到了荷载-挠度曲线、荷载-应变曲线和弯矩-曲率曲线,并分析了试件核心混凝土的破坏模态。试验结果表明:高强方钢管高强混凝土纯弯构件的破坏形态为受弯破坏;核心混凝土裂缝分布均匀,最大的裂缝位于混凝土受拉区跨中截面附近;随着钢材屈服强度的增大,试件的承载力增大;根据弯矩-曲率曲线可以将纯弯构件的受力过程分为弹性阶段、弹塑性阶段和强化阶段。采用有限元分析软件ABAQUS对高强方钢管高强混凝土纯弯构件进行了有限元模拟,模拟结果与试验结果吻合较好。在此基础上,分析了钢材屈服强度、混凝土强度、含钢率对纯弯构件受力性能的影响。分析结果表明,纯弯构件的承载力随着含钢率、钢材屈服强度、混凝土强度的增加而增加,其中,含钢率和钢材屈服强度对构件的承载力影响较大;与钢材屈服强度和混凝土强度相比,含钢率对提高纯弯构件的抗弯刚度影响较大。  相似文献   

17.
为了研究型钢混凝土十形截面柱-梁框架节点在平面受力与空间受力状态下受低周循环荷载作用的滞回性能,以柱截面配钢形式和水平加载角度为变化参数,进行了4个平面和3个空间十形截面柱-梁节点的低周反复加载试验。比较研究了两类节点在破坏形态、滞回曲线、承载能力、耗能能力及变形延性等抗震性能指标上的差异。研究结果表明:型钢混凝土十形截面柱平面节点主要发生核心区混凝土的剪切斜压破坏,垂直于加载方向左右两侧的柱肢对斜裂缝的发展有一定的抑制作用,而空间节点则发生核心区混凝土剪切斜压伴随黏结裂缝的破坏模式;与平面节点相比,空间节点的滞回环饱满,延性和耗能能力更大,但其承载力有所下降。基于试验与理论分析结果建立型钢混凝土十形截面柱-梁平面与空间节点的受剪承载力计算式,其计算结果与试验结果吻合较好。  相似文献   

18.
提出了一种部分预制部分外包装配式组合梁,为研究其受剪性能,设计了5根预制装配式型钢部分外包混凝土(PPEC)梁和1根整浇部分外包混凝土(PEC)梁。观察了PPEC梁在竖向荷载作用下的剪切破坏特点并绘制了荷载-跨中挠度曲线,分析了混凝土强度等级、剪跨比和浇筑方式对受剪承载力的影响。试验结果表明:PPEC梁截面形式与构造基本可行,破坏形式均为剪压破坏。混凝土强度越高,PPEC梁受剪承载力越高;随剪跨比增大,PPEC梁受剪承载力降低;PPEC梁受剪承载力略小于整浇PEC梁。  相似文献   

19.
为研究受拉钢筋套筒挤压搭接连接的预制空心楼板-叠合梁连接节点在竖向荷载作用下的受力性能,进行了2个筒芯内模布设方向不同的预制空心楼板-叠合梁连接节点和1个现浇空心楼板-叠合梁连接节点的静力试验。结果表明:3个试件的裂缝分布相同、破坏形态相同,均为空心楼板受弯破坏;试件的试验承载力与规范计算承载力的比值均大于1.05,可采用规范正截面受弯承载力公式计算预制空心楼板的受弯承载力;试件的名义屈服荷载、峰值荷载、峰值点割线刚度基本相同;预制空心楼板受拉钢筋套筒挤压搭接接头可有效传递钢筋拉力。  相似文献   

20.
为研究半预制HRB600级钢筋钢纤维高强混凝土梁(简称半预制梁)的受弯性能,设计了5根半预制梁进行了三分点单调加载试验,分析了预制外壳混凝土强度、钢纤维掺量以及键槽间距等因素对半预制梁承载力、挠度、裂缝发展变化规律的影响,并与现浇HRB600级钢筋高强混凝土梁(简称现浇梁)进行了比较.结果 表明,半预制梁与现浇梁表现出相同的受力特点和变形特征;预制外壳加入钢纤维可提高试验梁的开裂荷载,改善延性,减小裂缝宽度;提高预制外壳混凝土强度可提高试验梁的极限承载力;设置键槽,可提高梁的极限承载力,延缓刚度退化,改善延性;设置键槽的半预制梁在受弯荷载下的承载力、裂缝宽度、挠度可按《纤维混凝土结构技术规程》(CECS 38:2004)计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号