首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
粉末活性炭技术处理水中臭味物质的应用研究   总被引:2,自引:0,他引:2  
随着水资源日益紧缺、水质恶化,原水臭味问题成为我国给水厂迫切关注的水质问题.经过对B市地表水水源突发臭味问题进行分析,确定2-MIB为水体主要致臭物质.通过臭氧、高锰酸钾预氧化和粉末活性炭对水中2-MIB的去除试验,发现粉末活性炭对其处理效果最佳.原水投加粉末活性炭与现有水厂常规处理 活性炭工艺构成解决臭味问题的双重技术保障.通过实验室吸附试验和中试确定了粉末活性炭投加点位置和投加量等技术参数.在加强滤池反冲洗及部分回流水排放的条件下,原水2-MIB浓度达到100 ng/L时,投加15 mg/L粉末活性炭、20 mg/L聚氯化铝时,可将出厂水2-MIB控制在10 ng/L以下.  相似文献   

2.
考察了深圳市内某水库嗅味物质的时空分布及给水厂常用处理工艺对嗅味物质的去除效果,并提出了嗅味物质强化去除的手段。结果表明:该水库中主要致嗅物质为2-甲基异茨醇(2-MIB),在采集的水样中2-MIB超标率高达70.4%。水库中两种嗅味物质[2-MIB和土溴素(GSM)]浓度随季节变化规律明显,夏秋季节显著高于春冬季节。在水平方向上,2-MIB和GSM浓度均在库中C点最低;在垂直方向上,两种嗅味物质浓度随水深变化不显著。当前给水厂混凝沉淀和过滤工艺对嗅味物质去除效果较差,粉末活性炭吸附可有效去除2-MIB和GSM。当2-MIB和GSM初始浓度均为100 ng/L,活性炭投量为20 mg/L时,经90 min吸附二者去除率均超过97%,且活性炭对二者的吸附过程符合Freundlich模型。  相似文献   

3.
吴维  赵新华  刘旭 《给水排水》2012,38(5):133-136
探讨了粉末活性炭对抗生素的去除效果.在对水体中30种常见抗生素污染调研的基础上,选取萘啶酸、土霉素、林可霉素3种代表性抗生素进一步分析所需粉末活性炭的投加量.研究结果表明:当污染物在1 mg/L时,粉末活性炭的投加量分别为115 mg/L(萘啶酸)、75 mg/L(土霉素)、25mg/L(林可霉素),去除率均在99%以上,并根据其他抗生素的吸附难易度,推导出在相同污染程度下粉末活性炭的投加量;当原水中出现小于1 μg/L的持续性污染时,粉末活性炭的投加量应保持在1~35 mg/L,以保证稳定高效的去除效果.  相似文献   

4.
针对饮用水中二甲基异莰醇(2-MIB)污染和UV/H_2O_2高级氧化工艺H_2O_2残留问题,构建了UV/H_2O_2/Cl_2组合工艺,并以加标滤后水为原水开展了相关中试研究。基于响应曲面法对UV/H_2O_2工艺去除2-MIB进行参数优化,在此基础上对出水残留H_2O_2采用加氯中和处理,调整NaClO投加量以保证出水符合出厂水余氯要求。最终确定UV/H_2O_2/Cl_2组合工艺运行的最优工况为:当2-MIB为275ng/L时,UV为350mJ/cm~2,H_2O_2投加量6mg/L,NaClO投加量7.5mg/L,在确定的最优工况下连续稳定运行组合工艺,对工艺出水进行检测,结果表明UV/H_2O_2/Cl_2组合工艺对2-MIB去除率达到96.95%,出水余氯值0.4~0.5 mg/L,对TOC、UV_(254)去除率分别达到15.59%、65.71%,能够氧化去除水中大分子有机物,对色氨酸等5种溶解性有机物去除效果良好,且不会带来消毒副产物超标和生物毒性问题,最终出水符合《生活饮用水卫生标准》(GB 5749-2006)对水质的要求。  相似文献   

5.
以长江陈行水库原水为研究对象,探讨了粉末活性炭—超滤组合工艺对水中CODMn、UV254、浊度、氨氮等去除效果,评价投加粉末活性炭后超滤膜跨膜压差(TMP)的变化情况.结果表明:超滤膜出水CODMn均值为1.10 mg/L,平均去除率为48.7%,UV254均值为0.016 cm-1,平均去除率为76.2%;组合工艺对水中氨氮具有一定的去除效果,对总铁、总锰去除效果显著,出水浊度保持在0.031 NTU以下.粉末活性炭投加于沉淀池之前,对于改善出水水质、减轻膜污染起到了较好的效果.  相似文献   

6.
乙苯是净水厂原水突发水质污染的高风险物质之一.通过中试研究了应对原水突发乙苯污染的应急处理工艺.结果表明,常规工艺难以去除水中乙苯,向原水中投加粉末活性炭(PAC)与强化常规工艺联用可有效去除水中乙苯,保证处理后水质达到《生活饮用水卫生标准》(GB 5749-2006)要求;PAC与原水混合阶段是乙苯去除的主要阶段,去除率为78.9%~97.4%,强化常规工艺可进一步去除水中低浓度乙苯,颗粒活性炭滤柱作为安全余量,是水质安全保障的最后关口.基于中试结果,给出了应对原水突发乙苯污染时PAC对乙苯的吸附能力.  相似文献   

7.
刘利 《给水排水》2012,(Z2):14-18
采用静态模拟试验,研究了粉末活性炭应急投加技术中存在的碳种优选、最佳投加量和投加点确定等问题。结果表明,投加粉末活性炭作为头部原水水质变化的应急处理手段是完全可行的,能够保证给水厂的供水安全;PICA煤质碳为粉末活性炭应急处理原水的最佳碳种;结合UV254、CODMn和色度三项指标以及给水厂的实际情况得出,吸水井处为粉末活性炭应急投加的最佳点;在水质急剧变化时,粉末活性炭投量为20~30mg/L是适宜的,其中UV254的去除率净增加20%左右,CODMn的去除率净提高10%左右;当水质极端变差时可考虑将粉末活性炭的投加量增加至50mg/L。  相似文献   

8.
周建平  许龙  芮旻  沈飚  富良 《给水排水》2012,38(1):17-20
P市地表原水受到有机物污染,水中CODMn经常高达10mg/L以上,为此,在G水厂的扩建工程中,采用了两级臭氧—生物活性炭深度处理工艺,以保证出水水质安全。水厂运行结果表明,在活性炭吸附饱和后,一级炭池出水CODMn仍有3~5mg/L,需二级臭氧—生物活性炭处理才能使出厂水CODMn小于3mg/L。当前后臭氧分级投加比例为3∶2时,有机物的去除率最高。  相似文献   

9.
研究了投加粉末活性炭并回流泥炭后高密度沉淀池对有机物的去除效果。结果表明:粉末活性炭回流后有机物的去除效果显著提高:CODMn平均去除率为43.66%,比未投加粉末活性炭工况的32%提高了近12个百分点,沉淀池出水平均CODMn为3.46mg/L,比未投加粉末活性炭时的4.13mg/L降低了约0.7mg/L;对比投炭前后沉淀池中底泥的微生物好氧速率,发现其微生物量的提高与有机物去除效果的变化一致,投加粉未活性炭提高了污泥中微生物量从而提高了有机物的去除率;通过GC-MS对半挥发性有机物的检测发现,投加粉末活性炭后的吸附作用对有机物的浓度有很好的去除效果但对有机物种类去除效果有限,而投炭后吸附以及随着投炭产生的微生物强化作用对有机物种类和浓度都有很好的去除效果。  相似文献   

10.
突发溴氰菊酯污染的应急处理工艺中试研究   总被引:1,自引:0,他引:1  
溴氰菊酯是净水厂原水突发水质污染的高风险物质之一。通过中试研究了原水突发溴氰菊酯污染的应急处理工艺。结果表明,仅靠常规工艺难以有效应对原水突发溴氰菊酯污染;向原水中投加粉末活性炭(PAC)与强化常规处理工艺联用可有效去除水中溴氰菊酯,保证处理后水质达到生活饮用水卫生标准要求;炭液混合和混凝澄清阶段是溴氰菊酯去除的主要阶段,去除率为42%~98%;炭砂滤柱通过吸附截留水中载有溴氰菊酯的微小絮体颗粒,实现进一步去除水中溴氰菊酯的目的;颗粒炭滤柱作为安全余量,是水质安全保障的最后关口。基于中试结果,给出了应对原水突发溴氰菊酯污染时PAC对溴氰菊酯的吸附能力。  相似文献   

11.
针对株洲市自来水公司湘江水源水和出厂水水质 ,进行强化混凝试验研究。试验表明 ,采用高锰酸钾 粉末活性炭联用组合工艺 ,对老水厂改造 ,提高除污去浊效率 ,确实是一种经济有效的手段。高锰酸钾作为强氧化剂 ,降解有机物效果较理想 ,粉末活性炭对水中的小分子有机物有很好的吸附作用 ,有利于去色除味。两者组合同时用于常规净水工艺流程 ,使之协同作用 ,效果更为显著。当原水CODMn为 4 0 3mg/L ,浊度为 30NTU ,UV2 54为0 33,NH3 -N为 0 4 6mg/L时 ,投加聚合氯化铝 2 0mg/L ,沉淀水相应水质参数分别为 :2 72mg/L ,1 86NTU ,0 0 88,0 2 8mg/L ,去除率分别为 32 5 % ,93 8% ,73 3% ,39 1% ;采用高锰酸钾 粉末活性炭联用组合工艺 ,高锰酸钾投加量0 2mg/L ,聚合氯化铝投加量 2 0mg/L ,粉末活性炭投加量10mg/L ,沉淀水相应水质参数分别为 :1 87mg/L ,1 4 3NTU ,0 0 3,0 2 0mg/L ,而滤后水相应水质参数为 :0 93mg/L ,0 81NTU ,0 0 3,0 19mg/L ,去除率为 76 5 % ,97 3% ,90 9% ,5 8 7%。强化混凝正交试验表明 :助凝剂、混凝剂投加顺序即投加点以及高锰酸钾投加量 ,对UV2 54,NH3 -N及浊度去除均有显著影响。高锰酸钾与聚合氯化铝同时投加 ,30s后再投加粉末活性炭 ,效果最好。  相似文献   

12.
为了探究压力强化混凝沉淀过滤除藻工艺中藻毒素的去除效果,试验对比研究了预加压和预氧化后的含藻水,经混凝沉淀、粉末活性炭吸附后的藻毒素去除效果,考察了不同粉末活性炭投加点及投加量对藻毒素去除效果的影响。结果表明,含藻水加压后混凝沉淀,藻类和浊度物质去除效果最优,蓝藻去除率达到96.2%,浊度降至0.49NTU。含藻水在加压和高锰酸钾预氧化后,水中藻毒素浓度未增加,而次氯酸钠预氧化后水中藻毒素浓度最大增幅为215.78%;对于加压水样,在混凝剂投加前30min或投加后7min投加粉末活性炭效果较好,粉末活性炭投加量为5~20 mg/L时,沉淀水藻毒素平均去除率分别达54.13%和53.57%,而与混凝剂同时投加则效果不佳。对次氯酸钠预氧化的水样,粉末活性炭与混凝剂同时投加时效果最好,沉淀水藻毒素平均去除率15.84%。  相似文献   

13.
粉末活性炭(PAC)对2-MIB的吸附过程更接近于Freundich吸附等温模式。用树脂富集方法将松花江水中的天然有机物(NOM)分为憎水性酸(HOA)、憎水性碱(HOB)、憎水中性物(HON)、亲水酸(HIA)、亲水碱(HIB)、亲水中性物(HIN)等六类,原水中有机碳的回收率为84.7%(以TOC计)。不同组分NOM不同程度地降低了PAC的吸附容量。以松花江水为本底,利用等背景化合物模式进行试验,结果表明,活性炭的吸附容量与2-MIB初始浓度成正比。利用HSDM模型能很好地预测PAC吸附松花江原水中2-MIB的动力学过程,在PAC投加量适当的情况下,吸附时间为4h时的吸附量占吸附平衡总量的70%左右,与实测结果接近。  相似文献   

14.
由于水源污染日趋严重,常规水处理工艺难以满足现代饮用水水质要求.本课题研究了应用粉末活性炭处理污染原水的工艺方法和关键技术.试验结果表明:(1)模拟静态吸附选炭试验是一种可靠的接近生产实际工况的试验方法.常用炭种中木屑炭的吸附效果较好.(2)粉末活性炭的最佳投加点是在絮凝中段.这样可有效避免吸附与混凝的竞争,并使粉末活性炭附着于矾花的表面而易分离.建议粉末活性炭投加量为10~15mg/L,该条件下COD_(Mn)去除率可稳定在20%左右,  相似文献   

15.
南水北调的应急工程是从河北四水库调水进京,四水库水源水质与密云水库水质相差较大.为了保证河北水进京后水厂工艺运行的稳定性,根据水厂现行工艺(混凝-沉淀-煤砂过滤-活性炭过滤)增加预臭氧在河北黄壁庄水库进行适应性研究.试验结果表明:在投加臭氧1.5~2.6 mg/L后炭出水基本无味;试验条件为:臭氧浓度0.4 mg/L,接触时间8 min时,预臭氧能够将剑水蚤杀死去除;预臭氧后系统对有机物去除效果较好,且沉后藻类去除率达到80%以上,煤滤池出水藻类低于2万个/L;中试系统煤滤池出水和炭滤池出水溴酸盐浓度均小于5 μg/L,因此臭氧氧化后不存在溴酸盐副产物超标的风险.同时,建议在河北水进京前测定水中MIB浓度,适时调整臭氧投加量,在有必要的情况下考虑增加粉末活性炭预吸附.  相似文献   

16.
高速给水曝气生物滤池投加高锰酸钾与粉末活性炭的研究   总被引:1,自引:0,他引:1  
邹亮  廖伟  陆少鸣 《给水排水》2012,38(7):123-126
针对采用高速给水曝气生物滤池(BAF)—常规处理工艺处理南方地区季节性微污染原水时,可能遇到污染高峰期或应急状况而联用高锰酸钾(KMnO4)与粉末活性炭(PAC),通过中试研究选择合适的投加组合方式,并优化投加量。结果表明:选择在BAF之前投加高锰酸钾、BAF之后常规处理工艺之前投加PAC的联用方式能高效地去除CODMn、藻类、色度、臭和味,降低滤后水浊度。当高锰酸钾投加量为0.8mg/L、粉末活性炭投加量为8mg/L时,工艺对CODMn、藻类、色度、臭和味及浊度的去除率达到最大,BAF对CODMn、藻类、色度、臭和味及浊度的去除率分别为42.0%、42.7%、17.0%、17.6%及22.9%,砂滤出水的总去除率达75.9%、95.8%、58.2%、94.3%及99.24%。  相似文献   

17.
在常规混凝工艺确定的最佳处理条件下,考察了单独高锰酸钾(KMnO4)和次氯酸钠(NaClO)预氧化、单独投加粉末活性炭(PAC)以及KMnO4和PAC联用对混凝处理东太湖原水的强化效果。结果表明,聚氯化铝和硫酸铝的最佳投加量分别为20mg/L和30mg/L,聚氯化铝的混凝效果明显优于硫酸铝;投加KMnO4对浊度、CODMn和UV254的去除均有一定程度提高,但不利于原水氨氮的去除;投加PAC有显著的强化混凝作用,各指标去除率均有所提高;KMnO4和PAC联用能进一步提高水中UV254的去除率;预氧化大大提高了混凝对氨氮的去除效果,投加1mg/L NaClO对氨氮去除率可达100%。  相似文献   

18.
pH对粉末活性炭去除有机物的影响   总被引:9,自引:0,他引:9  
粉末活性炭去除水中有机物的效果受水的pH影响较大。降低水的pH,可显著提高粉末活性炭去除有机物的效果。对于黄浦江水,当pH为5.5,粉末活性炭投加量为40mg/L时,DOC和UV_(254)的去除率分别达到43.8%和36.2%。  相似文献   

19.
本课题采用粉末活性炭和硅藻土过滤技术,简称PDF技术,对自来水进行深度处理,试验结果表明: 1.粉末活性炭吸附速度极快,故吸附时间对有机物去除效果影响较小; 2.原水中颗粒粒径大小对过滤周期的影响远大于颗粒浓度的影响;同时,附加剂中颗粒粒径分布的均匀性对过滤周期的影响很大; 3.预涂剂中投加适量的混凝剂,对过滤周期具有良好的改善作用; 4.PDF技术可以取得稳定的有机物去除效果。试验表明:粉末活性炭投加量为60mg/L时,COD_(Mn)平均去除率为为60%左右,UV_(254)平均去除率为90%以上。对三氯甲烷、四氯乙烯的去除率分别为61.61%和84.26%; 5.PDF技术在过滤过程中不存在微生物滋长的问题。  相似文献   

20.
针对受毒死蜱污染的水源水,通过小试研究了粉末活性炭(PAC)-混凝联用工艺对毒死蜱的去除效果.结果表明混凝工艺对毒死蜱具有一定的去除效果,但当原水中毒死蜱浓度较高时,混凝后毒死蜱浓度高于《生活饮用水卫生标准》 (GB 5749-2006) 30 μg/L的限值,因此为使出水达标还需增加PAC吸附处理措施;针对原水中不同初始浓度的毒死蜱(超标5~50倍),调节PAC投量(10~60mg/L),吸附30 min后,再投加30mg/L聚氯化铝,经PAC-混凝联用工艺处理后出水中毒死蜱浓度小于30 μg/L,满足《生活饮用水卫生标准》要求.PAC-混凝联用工艺可以作为水源水突发毒死蜱污染时的应急处理措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号