首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
王海涛  杨笑梅 《工程力学》2007,24(3):170-178
为了求解双压电材料在机械荷载和(或)外加电场的作用下,界面裂纹尖端的力电耦合奇异场,提出了一种全数值方法。该全数值方法的实施可以分为两个部分:首先,用一维有限元方法求解不同压电材料界面裂纹尖端力电耦合奇异场特征解;然后,采用杂交有限元列式构造一种所谓的裂纹单元,在该杂交有限元的列式中,假设应力场和电位移场是利用上述一维有限元方法计算得到的特征解推导出来的;利用该单元可以得到全部的力电耦合奇异场的解。通过对单一压电材料中心裂纹尖端力电耦合奇异场的计算,该方法的准确性和高效性得到了验证;进而用该方法研究了双压电材料界面力电耦合场奇异场。  相似文献   

2.
该文提出了一种计算效率较高的分析不同材料界面应力奇异性的一维杂交有限元方法。为了推导该方法,首先列出了用于求解不同材料界面裂纹奇异应力场特征解的基本方程和边界条件,然后利用加权残量方法(weighted residual method),得到上述基本方程和边界条件的弱形式,该弱形式的基本变量为位移和应力。运用Galerkin有限元方法的思想及上述弱形式,最后得到了一个一维杂交有限元方法,该一维杂交有限元方法只需对扇形区域在角度方向上离散,其总体方程为一个二次特征矩阵方程。数值算例表明:该方法可以准确而高效地计算不同材料界面奇异应力场的特征解。  相似文献   

3.
双压电材料界面力电耦合场奇异性研究   总被引:3,自引:1,他引:2  
王海涛  佘锦炎 《工程力学》2006,23(1):165-171
针对不同压电材料中界面裂纹尖端的扇形区域推导出了包含基本方程、裂纹面D-P边界条件和不同压电材料交界面处的边界条件的弱形式。在该弱形式的基础上,利用特征方程展开方法(eigenfunction expansion technique),可以得到一个分析压电材料裂纹尖端处力电耦合场奇异性的特殊的一维有限元列式。该一维有限元列式只需对扇形区域在角度方向上离散,最后的总体方程为一个二次特征根方程。求解该特征根方程就可以得到压电材料裂纹尖端处力电耦合奇异场的特征解。通过数值算例表明该方法可以准确而高效地计算压电材料裂纹尖端处力电耦合奇异场的特征解,进而用该方法研究了双压电材料界面力电耦合场的奇异性。  相似文献   

4.
王珊 《工程力学》2018,35(5):10-16
对于含穿透裂纹的板结构,裂纹尖端应力场及应力强度因子的计算精度对评估板的安全性具有非常重要的影响。基于含裂纹Kirchhoff板弯曲问题中裂纹尖端场的辛本征解析解,该文提出了一个提高裂纹尖端应力场计算精度的有限元应力恢复方法。首先利用常规有限元程序对含裂纹板弯曲问题进行分析,得到裂纹尖端附近的单元节点位移;然后根据节点位移确定辛本征解中的待定系数,得到裂纹尖端附近应力场的显式表达式。数值结果表明,该方法给出的应力分析精度得到较大提高,并具有良好的数值稳定性。  相似文献   

5.
利用一种数值方法分析压电材料切口尖端包括奇异应力场和奇异电位移场在内的双重奇异性。基于切口尖端的位移场按幂级数渐近展开假设, 从应力平衡方程和Maxwell方程出发, 推导出关于压电材料切口奇性指数的特征方程组, 同时将切口的力学和电学边界条件转化为奇性指数和特征函数的组合表达, 从而将压电材料双重奇性分析问题转化为在相应边界条件下微分方程组的特征值求解问题, 采用插值矩阵法, 可以一次性地计算出压电材料切口的各阶奇性指数。裂纹作为切口的特例, 其尖端的电弹性奇性指数亦可以根据本法求出。  相似文献   

6.
利用一种数值方法分析压电材料切口尖端包括奇异应力场和奇异电位移场在内的双重奇异性.基于切口尖端的位移场按幂级数渐近展开假设,从应力平衡方程和Maxwell方程出发,推导出关于压电材料切口奇性指数的特征方程组,同时将切口的力学和电学边界条件转化为奇性指数和特征函数的组合表达,从而将压电材料双重奇性分析问题转化为在相应边界条件下微分方程组的特征值求解问题,采用插值矩阵法,可以一次性地计算出压电材料切口的各阶奇性指数.裂纹作为切口的特例,其尖端的电弹性奇性指数亦可以根据本法求出.  相似文献   

7.
本文利用复变函数方法,借助于Riemann-Schwarz延拓技术和保形映照方法,研究了渗透性边界条件下周期共线反平面裂纹问题,获得了解的表达式,得到了力学和电学强度因子。结果表明在裂纹尖端应力和电位移的奇异性都与远场作用的应力载荷和裂纹长度有关,其中应力的奇异性与材料无关,电位移的奇异性则与材料有关,电载荷对裂尖的奇异性没有影响。最后,运用数值算例,给出周期裂纹间的干涉效应和裂纹的尺度效应。  相似文献   

8.
余能积分提取法计算应力强度因子   总被引:1,自引:0,他引:1  
徐永君  袁驷 《工程力学》1996,(A01):196-201
本文利用最小余能原理导出了一种计算应力强度因子的积分提取法,本方法的特点是只要已知位移场就可切口尖端附近的任意围线区域内进行应力强度因子的积分提取,对不同的问题及对任意张切口和任意多材料问题具通用性,文中给出基于有限元线法(FiniteElementMethodofLne,简称FEMOL)求解的单材料和双材料反平面切口问题及平面切口问题初步实施方案,给出了数值算例表明,本法原理简单,行之有效,为计  相似文献   

9.
提出了一种用于解决线粘弹性断裂问题的增量加料有限元法。为了反映裂纹尖端的应力奇异性,在裂尖附近的应力奇异区采用若干四边形加料单元和过渡单元,非奇异区采用常规四边形单元,三种单元分区混合使用形成求解域网格划分。加料单元通过引入裂尖渐近位移场,构造出可以较好反映裂尖奇异性的单元位移模式,过渡单元在加料单元基础上引入调整函数构造单元位移模式,用于连接加料单元和常规单元,以消除加料单元和常规单元间位移不协调。基于Boltzmann叠加原理,推导了粘弹性材料的增量型本构关系,进而获得了增量加料有限元列式,并基于节点位移外推法计算粘弹性介质中裂纹应变能释放率。数值算例验证了该文方法的正确性和有效性。  相似文献   

10.
位移型板单元内力解的杂交化后处理   总被引:2,自引:1,他引:1  
本文针对如何提高位移型板弯曲单元内力解的问题进行了一些探讨,在总结位移型和杂交型有限元的特点基础之上,提出了利用杂交元原理对位移型单元内力解进行重算的后处理方案:首先由位移型板元求出单元结点位移;其次假设满足平衡方程的单元内力场,并利用杂交能量泛函原理确定其与单元位移之间的联系,进而求出单元内力解。数值算例表明,本文所提出的方法可以明显改善多种板弯曲单元内力解的性态,使单元在获得较精确的位移解的同时,又可获得较好的内力解,而且又不使单元列式过于复杂。本文为改善位移型有限元的内力和应力解提供了一条可行的新途径。  相似文献   

11.
A novel hybrid finite element method based on a numerical procedure is proposed to compute singular field near V-shaped notch corners in an anisotropic material containing polygonal holes. The finite element method is established by the following three steps: (1) an ad hoc one-dimensional finite element formulation is employed to determined numerical eigensolutions of the singular field near an V-shaped notch corner; (2) a super corner tip element is constructed to determine the strength of the singular field, in which the independent assumed stress fields are extracted from the eigensolutions; (3) a novel hybrid finite element equation is obtained by coupling the super corner tip element with the conventional hybrid stress elements. In numerical examples, generalized stress intensity factors for interactions between two polygonal holes with various geometry, space position and material property are mainly discussed. All the numerical results show that present method yields satisfactory singular stress field solutions with fewer elements. Compared with the conventional finite element methods and integral equation methods, the present method is more suitable for dealing with micromechanics of anisotropic materials.  相似文献   

12.
A super inclusion corner apex element for polygonal inclusions in 0–3 and 1–3 composites is developed by using numerical stress and displacement field solutions based on an ad hoc finite element eigenanalysis method. Singular stresses near the apex of inclusion corner under thermo-mechanical loads can be obtained by using a super inclusion corner apex element in conjunction with hybrid-stress elements. The validity and the applicability of this technique are established by comparing the present numerical results with the existing solutions and the conventional finite element solutions. As examples of applications, a square array of square inclusions in 0–3 composites and a rectangular array of rectangular inclusions in 1–3 composites are considered. All numerical examples show that the present numerical method yields satisfactory solutions with fewer elements and is applicable to complex problems such as multiple singular points or fields in composite materials.  相似文献   

13.
A super singular wedge tip element whose stiffness matrix is based on numerical eigensolutions is incorporated into standard hybrid-stress finite elements to study singular stress fields around the vertex of anisotropic multi-material wedge. The numerical eigensolutions are obtained by an ad hoc finite element eigenanalysis method. To demonstrate the validity of the method, singular stresses for some typical anisotropic single-material/bimaterial wedges are investigated. All numerical results show present finite element method converges rapidly to available solutions with few elements. The present method is applicable to dealing with the problems with more complex geometries.  相似文献   

14.
A super V-shaped notch tip element that simulates electro-elastic behavior near a V-shaped notch tip is first developed based on one-dimensional finite element eigensolutions. The present element is then incorporated with standard four-node hybrid electro-elastic field elements to calculate electro-elastic singularity orders, singular strain distributions and generalized stress intensity factors ahead of V-shaped notch tips in three-point-bending piezoelectric specimens with notch angles α = 0°, 30°, 60° and 90°, respectively. The present numerical solutions are compared with those obtained from the moiré interferometry experiment technique. Finally, the effect of the V-shaped notch angle and electric field on singular electro-elastic fields is also discussed.  相似文献   

15.
This paper presents a new hybrid element approach and applies it to plate bending. In contrast to more conventional models, the formulation is based on displacement fields which fulfil a priori the non-homogeneous Lagrange equation (Trefftz method). The interelement continuity is enforced by using a stationary principle together with an independent interelement displacement. The final unknowns are the nodal displacements and the elements may be implemented without any difficulty in finite element libraries of standard finite element programs. The formulation only calls for integration along the element boundaries which enables arbitrary polygonal or even curve-sided elements to be generated. Where relevant, known local solutions in the vicinity of a singularity or stress concentration may be used as an optional expansion basis to obtain, for example, particular singular corner elements, elements presenting circular holes, etc. Thus a high degree of accuracy may be achieved without a troublesome mesh refinement. Another important advantage of the formulation is the possibility of generating by a single element subroutine a large number of various elements (triangles, quadrilaterals, etc.), presenting an increasing degree of accuracy. The paper summarizes the results of numerical studies and shows the excellent accuracy and efficiency of the new elements. The conclusions present some ideas concerning the adaptive version of the new elements, extension to nonlinear problems and some other developments.  相似文献   

16.
A finite element formulation is developed to determine the order and angular variation of singular stress states at material and geometric discontinuities in anisotropic materials subject to antiplane shear loading. The displacement field of the sectorial element is quadratic in the angular co-ordinate direction and asymptotic in the radial direction measured from the singular point. The formulation of Yamada and Okumura14 for in-plane problems is adapted for this purpose. The simplicity and accuracy of the formulation are demonstrated by comparison to several analytical antiplane shear solutions for both isotropic and anisotropic multi-material wedges and junctions with and without disbonds. The nature and speed of convergence of the eigensolution suggests that the solution presented here could be used in developing enriched elements for accurate and computationally efficient evaluation of stress intensity factors in problems having complex global geometries.  相似文献   

17.
A finite element formulation based on the work of Yamada and Okumura14 is presented to determine the order of singularity and angular variation of the stress and displacement fields surrounding a singular point on a free edge of anisotropic materials. Emphasis is placed on the computational aspects of this method when applied to configurations including fully bonded multi-material junctions intersecting a free edge as well as materials containing cracks intersecting a free edge. The study shows that the singularity of the three-dimensional stress field may be accurately determined with a relatively small number of elements only when a proper level of numerical integration is used. The method is applied to isotropic and orthotropic materials with a crack intersecting a free edge and an anisotropic three-material junction intersecting a free edge. The efficiency and accuracy of the method indicates it could be used to develop a numerical solution for the singular field that could in turn be used to create free-edge enriched finite elements.  相似文献   

18.
Based on eigenfunctions of asymptotic singular electro-elastic fields obtained from a kind of ad hoc finite element method [Chen MC, Zhu JJ, Sze KY. Finite element analysis of piezoelectric elasticity with singular inplane electroelastic fields. Engng Fract Mech 2006;73(7):855-68], a super corner-tip element model is established from the generalized Hellinger-Reissner variational functional and then incorporated into the regular hybrid-stress finite element to determine the coefficients of asymptotic singular electro-elastic fields near a corner-tip. The focus of this paper is not to discuss the well-known behavior of electrically impermeable and permeable (usually it means fully permeable, hereinafter the same) cracks but analyze the limited permeable crack-like corner configurations embedded in the piezoelectric materials, i.e., study the influence of a dielectric medium inside the corner on the singular electro-elastic fields near the corner-tip. The boundary conditions of the impermeable or permeable corner can be considered as simple approximations representing upper and lower bounds for the electrical energy penetrating the corner. Benchmark examples on the piezoelectric crack problems show that present method yields satisfactory results with fewer elements than existing finite element methods do. As application, a piezoelectric corner configuration accounting for the limited permeable boundary condition is investigated, and it is found that the limited permeable assumption is necessary for corners with very small notch angles.  相似文献   

19.
This paper presents a convenient and efficient method to obtain accurate stress intensity factors for cracked anisotropic plates. In this method, a complex variable formulation in conjunction with a hybrid displacement finite element scheme is used to carry out the stiffness and stress calculations of finite cracked plates subjected to general boundary and loading conditions. Unlike other numerical methods used for local analysis such as the boundary element method, the present method results in a symmetric stiffness matrix, which can be directly incorporated into the stiffness matrix representing other structural parts modeled by conventional finite elements. Therefore, the present method is ideally suited for modeling cracked plates in a large complex structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号