首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。  相似文献   

2.
针对机场跑道异物(foreign object debris,FOD)在图像中目标占比小,特征不明显,经常导致误检、漏检的问题,提出一种改进YOLOv5的FOD目标检测算法。改进多尺度融合与检测部分,融合高分辨率特征图增强小目标特征表达,移除大目标检测层以减少网络推理计算量;引入轻量高效的卷积注意力模块(CBAM),从空间与通道两个维度提升模型关注目标特征的能力;在特征融合阶段采用RepVGG模块,提高模型特征融合能力的同时提高了检测精度;采用SIoU Loss作为损失函数,提升了边框回归的速度与精度。在自制FOD数据集上进行对比实验,结果表明:该方法在满足实时性的条件下,实现了95.01%的mAP50、55.79%的mAP50:95,比原算法YOLOv5分别提高了2.78、3.28个百分点,有效解决了传统FOD检测误检、漏检问题,同时与主流目标检测算法相比,提出的改进算法更适用于FOD检测任务。  相似文献   

3.
发电厂厂区内违规吸烟易导致火灾、爆炸等事故,会带来巨大损失;针对电厂内人员违规吸烟行为检测精度不高的问题,提出一种基于改进YOLOv5s(You Only Look Once v5s)的电厂内人员违规吸烟检测方法;该方法以YOLOv5s网络为基础,将YOLOv5s网络C3模块Bottleneck中的3×3卷积替换为多头自注意力层以提高算法的学习能力;接着在网络中添加ECA(Efficient Channel Attention)注意力模块,让网络更加关注待检测目标;同时将YOLOv5s网络的损失函数替换为SIoU(Scylla Intersection over Union),进一步提高算法的检测精度;最后采用加权双向特征金字塔网络(BiFPN,Bidirectional Feature Pyramid Network)代替原先YOLOv5s的特征金字塔网络,快速进行多尺度特征融合;实验结果表明,改进后算法吸烟行为的检测精度为89.3%,与改进前算法相比平均精度均值(mAP,mean Average Precision)提高了2.2%,检测效果显著提升,具有较高应用价值。  相似文献   

4.
无人机在情报、侦察和监视领域,目标自动检测可为侦察等任务提供准确的目标位置及类别,为地面指挥人员提供详尽的目标信息。针对无人机图像背景复杂、分辨率高、目标尺度差异大等特点,提出一种改进YOLOv5s目标检测算法。将压缩-激励模块引入到YOLOv5s算法中,提高网络的特征提取能力;引入双锥台特征融合(bifrustum feature fusion,BFF)结构,提高算法对较小目标的检测检测精度;将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高定位精度。实验结果表明,改进后的YOLOv5s取得了86.3%的平均均值精度(mAP),比原算法YOLOv5s提高了16.8个百分点,在复杂背景下仍能显著提升无人机图像目标检测性能。  相似文献   

5.
刘勇志  万方  雷光波  徐丽 《计算机仿真》2024,(4):214-218+516
针对黑色素瘤疾病在临床上存在检测准确率低以及人为主观性太强等问题,提出一种改进的YOLOv5目标检测模型BiC-YOLOv5。首先设计了一种双向特征提取网络BiFPN-L3替换原模型中的特征提取网络FPN,针对不同分辨率下的特征,使用多尺度特征融合的方式提取特征;其次,在骨干网络中融合CBAM注意力模块,设计了一种C3CBAM模块从通道与空间两个层面捕获特征信息以提升检测精度;最后,使用DIOU_loss损失函数,进一步提高模型的检测精度。通过仿真对比实现,BiC-YOLOv5的mAP值达到95.2%,相较原YOLOv5模型,精确度提高了5.2%,召回率提高了4.9%,mAP值提高了5.8%,可以有效的协助临床医学对黑色素瘤进行诊断。  相似文献   

6.
水下目标检测是海洋探测开发过程中一项具有挑战性的任务。针对现有的水下目标检测算法由于水下图像的低可见度和颜色失真等问题导致水下目标检测效果不佳的问题,提出了一种改进YOLOv7的水下目标检测算法,旨在提升水下目标检测性能。设计了一种多信息流融合注意力机制(spatial group-wise coordinated competitive attention,SGCA),解决卷积过程中由于图像全局上下文信息丢失而导致特征丢失的问题,提高了模型在图像模糊情况下的检测精度;并利用switchable atrous convolution(SAConv)模块替换ELAN结构中的3×3卷积模块,以增强骨干网络的特征提取能力。在预测部分采用Wise-IoU作为损失函数,Wise-IoU通过平衡不同质量图像上的模型训练结果,获得更准确的检测结果。采用基于暗通道先验(dark channel prior,DCP)和深度传输图的水下图像增强方法对水下数据集图像进行增强。实验结果表明,改进后的算法在自建的水下目标检测数据集上mAP取得了87.3%,与原始的YOLOv7算法相比较,mAP提高了3.4个百分...  相似文献   

7.
为解决火焰图像检测易被周围环境干扰、火焰特征复杂等问题,提出改进型YOLOv4火焰图像实时检测模型。改进模型的激活函数;通过K-Means聚类针对火焰图像的特征调整先验框的维度;通过改进损失函数,减少模型中不必要特征的学习;引入注意力机制(通道注意力(CAB)模块和空间注意力(SAB)模块),增强模型在通道和空间的感知力。实验结果表明,改进的YOLOv4目标检测算法的FPS可达76.7,较原来提升了1.1;检测精度和召回率为82.8%、0.78,分别比原算法提高了36.56%、0.36;损失值为0.7758,比原算法降低了1.2942。  相似文献   

8.
针对无人机航拍图像中目标小、尺度不一和背景复杂等导致检测精度低的问题,提出一种基于改进YOLOv5的无人机航拍图像目标检测算法DY-YOLOv5。该算法在检测头部分利用具有多重注意力机制的目标检测头方法Dynamic Head,提升检测头在复杂背景下的检测表现。在原模型neck部分增加一次上采样和Concat操作,并执行一个包含极小、小、中目标的多尺度特征检测,提升模型对中、小目标的特征提取能力。引入密集卷积网络DenseNet,将其与YOLOv5s主干网络的C3模块进行融合,提出C3_DenseNet模块,以加强特征传递并预防模型过拟合。在VisDrone2019数据集上应用DY-YOLOv5算法,平均精度均值(mAP)达到了43.9%,较原YOLOv5算法提升了11.4个百分点。召回率(Recall)为41.7%,较原算法提升了9.0个百分点。实验结果证明,改进算法显著提高了无人机航拍图像目标检测的精度。  相似文献   

9.
浦宁  魏霖静 《软件》2023,(10):11-15
目前苹果叶片病害检测技术仍然存在检测精度低、效率低的问题。对此,本文提出一种基于改进YOLOv5s的算法进行病害识别。首先,增加小目标检测层改进漏检问题,提高检测精度;其次,引入双向特征金字塔结构加强特征提取,融合多尺度特征扩大视野;最后,将损失函数替换为SIo U,解决了预测框和真实框方向不匹配问题。实验结果表明:改进后的算法在Original数据集上mAP0.5为95.4%,比传统的YOLOv5s提升了3.3%。改进后的算法在复杂度没有发生很大变化的基础上明显提升了算法性能。  相似文献   

10.
针对X光图像违禁品检测中的复杂背景、正负类别不平衡和漏检等问题,提出一种基于YOLOv5的X光违禁品检测算法。该算法通过在YOLOv5s骨干网络中引入Swin Transformer模块,利用局部自注意力与Shifted Window机制提升模型对X光图像全局特征的提取能力,并且在主干网络后增加空间注意力机制与通道注意力机制,以提升算法对违禁品关键特征的提取能力。引入一种自适应空间特征融合结构,缓解特征金字塔中不同层级特征图之间冲突对模型梯度的干扰。引入Focal Loss函数用于改进YOLOv5s的背景预测损失函数和分类损失函数,提升算法在正负样本与难易样本失衡情况下的检测能力。该算法在公开数据集SIXray100上的平均检测精度达到57.4%,相比YOLOv5s提高了4.5个百分点;在SIXray正样本数据集上的平均检测精度达到90.4%,相比YOLOv5s提高了2.4个百分点。实验结果表明,改进后的算法相比原始YOLOv5s算法检测精度有较大提升,证明了算法的有效性。  相似文献   

11.
为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交互;使用跨阶段分层卷积模块重构特征融合阶段对深层特征图的处理方式,防止网络退化和梯度消失;采用Mish激活函数,增强融合网络对非线性特征的提取能力。在RSOD、DIOR数据集上的实验结果表明,改进YOLOv4算法的测试mAP相比原YOLOv4算法分别高出4.5%、7.3%,其检测速度分别达到48 fps、45 fps,在保证实时性的同时检测精度有较大提升。  相似文献   

12.
改进YOLOv5的苹果花生长状态检测方法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对现有目标检测算法难以在果园复杂环境下对苹果花朵生长状态进行高精度检测的问题,提出一种改进YOLOv5的苹果花朵生长状态检测方法,对花蕾、半开、全开、凋落四类苹果树开花期花朵生长状态进行检测。该方法对跨阶段局部网络模块进行改进,并调整模块数量,结合协同注意力模块设计主干网络,提高模型检测性能并减少参数。结合新的检测尺度与基于拆分的卷积运算设计特征融合网络,提升网络特征融合能力。选用CIoU作为边框回归的损失函数实现高精度的定位。将改进算法与原始YOLOv5算法在自建数据集上进行对比实验,结果表明,改进算法mAP达到0.922,比YOLOv5提高5.4个百分点,与其他主流算法相比检测精度有较大提升,证明了算法的有效性。  相似文献   

13.
针对工业钢材瑕疵检测过程中存在的对多类别瑕疵检测精度低、效率低的问题,提出一种基于改进YOLOv5的瑕疵检测算法。首先在主干网络添加协同注意力机制,嵌入目标位置信息从而提升特征提取能力;然后改变边框回归的损失函数为CIoU Loss,提升对检验框定位的准确度;最后利用Ghost模块轻量化特点提出C3Ghost结构替换路径聚合层中的C3结构,减少模型参数量。测试结果表明,改进后的算法mAP值提升了2.6%,模型参数量减少了13.3%。验证了改进算法对工业钢材的多类别瑕疵检测的有效性。  相似文献   

14.
新冠疫情期间正确佩戴口罩可以有效防止病毒的传播,针对公共场所存在的人员密集、检测目 标较小等加大检测难度的问题,提出一种以 YOLOv5s 模型为基础并引入注意力机制融合多尺度注意力权重的 口罩佩戴检测算法。在 YOLOv5s 模型的骨干网络中分别引入 4 种注意力机制,抑制无关信息,增强特征图的 信息表达能力,提高模型对小尺度目标的检测能力。实验结果表明,引入 CBAM 模块后较原网络 mAP 值提升 了 6.9 个百分点,在 4 种注意力机制中提升幅度最明显,而引入 NAM 模块后在损失少量 mAP 的情况下使参 数量最少,最后通过对比实验选用 GIoU 损失函数计算边界框回归损失,进一步提升定位精度,最终结果较 原网络 mAP 值提升了 8.5 个百分点。改进模型在不同场景下的检测结果证明了该算法对小目标检测的准确 率和实用性。  相似文献   

15.
针对当前传统网络模型对交通标志识别精度低、检测不准确的问题,提出一种基于YOLOv8n优化、改进的Ghost-YOLOv8交通标志检测模型。使用GhostConv代替部分Conv,设计全新的C2fGhost模块代替部分C2f,减少了模型的参数量,提升了模型的检测性能;在Neck部分添加GAM注意力机制模块,强化特征中的语义信息和位置信息,提高了模型的特征融合能力;针对检测小目标时尺度不一导致语义信息的丢失,添加小目标检测层,增强深层语义信息与浅层语义信息的结合;使用GIoU边界损失函数代替原损失函数,提升了网络的边界框回归性能。实验结果表明,改进的模型在中国交通标志检测数据集TT100K中的精确度(Precision)及平均精度均值(mAP)相较于原模型分别提高了9.5、6.5个百分点,模型的参数量及模型大小相比原模型分别降低了0.223×109、0.2 MB。综合说明,该模型在减少模型参数量及大小的同时提高了检测精度,显著优于对比算法,也满足边缘计算设备的要求,具有实际的应用价值。  相似文献   

16.
针对无人机图像中违章建筑多为小目标且存在部分遮挡目标导致的检测速率慢、误检率高的问题,提出一种基于YOLOv5网络的违章建筑检测方法。在原来的批量标准化模块开始和结束处分别添加中心和缩放校准增强有效特征并形成更稳定的特征分布,加强网络模型的特征提取能力。用平滑处理后的KL(Kullback-Leibler)散度损失函数替换原损失函数置信度中的交叉熵,进一步提高模型的泛化性能。对YOLOv5的主干特征提取网络进行改进,将残差模块替换为LSandGlass模块减少信息损失并剔除低分辨率的特征层以减少语义丢失。实验结果表明,与原版的YOLOv5相比,改进后模型的训练更容易使得网络收敛,检测违章建筑的速度有了较大提升,同时提高了检测的精确度。  相似文献   

17.
针对水面目标检测中的噪声干扰和小目标的漏检问题,提出一种改进YOLOv8的水面小目标检测算法YOLOv8-WSSOD (YOLOv8-water surface small object detection).首先,为降低水面复杂环境在主干网络下采样过程中产生的噪声干扰,提出基于BiFormer双层路由注意力机制构建的C2fBF (C2f-BiFormer)模块,在特征提取过程中保留细粒度的上下文特征信息;其次,针对水面小目标的漏检问题,新增一个更小的检测头,提升网络对小目标的感知力,并在Neck端引入GSConv和Slim-neck,减轻模型复杂度并保持精度;最后,使用MPDIoU损失函数解决CIoU损失函数的局限性,以提高模型检测准确率.实验结果表明,相较于原始YOLOv8算法,该算法在水面小目标上平均准确率mAP@0.5提升了4.6%, mAP@0.5:0.95提升了2.2%,并且改进后的算法检测速度达到86f/s,能有效实现对水面小目标快速、准确的检测.  相似文献   

18.
传统的煤矸图像检测方法需要人工提取图像特征,准确率不高,实用性不强。现有基于改进YOLO的煤矸目标检测方法在速度和精度方面有所提升,但仍不能很好地满足选煤厂带式输送机实时智能煤矸分选需求。针对该问题,在YOLOv5s模型基础上进行改进,构建了YOLOv5s-SDE模型,提出了基于YOLOv5s-SDE的带式输送机煤矸目标检测方法。YOLOv5s-SDE模型通过在主干网络中添加压缩和激励(SE)模块,以增强有用特征,抑制无用特征,改善小目标煤矸检测效果;利用深度可分离卷积替换普通卷积,以减少参数量和计算量;将边界框回归损失函数CIoU替换为EIoU,提高了模型的收敛速度和检测精度。消融实验结果表明:YOLOv5sSDE模型对煤矸图像的检测准确率达87.9%,平均精度均值(mAP)达92.5%,检测速度达59.9帧/s,可有效检测煤和矸石,满足实时检测需求;与YOLOv5s模型相比,YOLOv5s-SDE模型的准确率下降2.3%,mAP提升1.3%,参数量减少22.2%,计算量下降24.1%,检测速度提升6.4%。同类改进模型对比实验结果表明,YOLOv5s-STA与YOLOv5s-Gho...  相似文献   

19.
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。  相似文献   

20.
为了满足锂离子电池电极缺陷检测精度与实时性的需求,解决电极图像背景噪声复杂、缺陷微小且对比度低等问题,提出一种基于注意力机制与多尺度特征融合的电极缺陷YOLO检测算法.在YOLOv4的基础上,首先,将SE(squeeze-and-excitation)注意力模块嵌入特征提取主干网络中,区分feature map中不同通道的重要性,强化目标区域的关键特征,提高网络的检测精度;其次,加入融合空洞卷积的池化金字塔(ASPP)结构,增大网络感受野的同时最大程度地保留多尺度特征信息,提高算法对小目标的检测性能;然后,设计一种多尺度稠密特征金字塔,在三尺度特征图的基础上增加一个浅层特征,采用稠密连接的方式融合特征,提升浅层细节特征与高级语义信息的融合能力,增强对微小缺陷特征的提取;最后,采用$ K $-means++算法聚类先验框,引入focal loss损失函数增大小目标样本的损失权重,有效提高网络学习的收敛速度.实验结果表明,所提算法较原YOLOv4模型的mAP值提升6.42%,较其他常用算法综合性能上有着较大的优势,可较好地满足实际工业生产的实时监测需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号