首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
新型材料MXene(过渡金属二维碳化物,氮化物和碳氮化物)由于其良好的电化学活性而被广泛应用于储能材料。聚吡咯因其具有稳定的导电性而常用作超级电容器材料。通过原位聚合法成功制备MXene(Ti_3C_2T_x)和聚吡咯(PPy)复合材料。利用扫描电镜(SEM)和X射线衍射仪(XRD)对Ti_3C_2T_x/PPy复合电极材料进行表征,结果表明PPy均匀地包覆在Ti_3C_2T_x表面。这种独特的复合材料展现良好的协同作用,有效提高了电子和离子的传输速率。电化学测试表明:Ti_3C_2T_x和聚吡咯质量比为2∶1时复合材料表现出最好的电化学性能,当电流密度为1 A·g~(-1)时,Ti_3C_2T_x/PPy-2的比电容达到139 F·g~(-1),并且拥有较好的倍率性能。结果表明Ti_3C_2T_x/PPy复合材料可用于制备超级电容器电极材料。  相似文献   

2.
超级电容器是一种绿色储能节能器件,其性能主要是由电极材料所决定的.以疏松的石墨烯(GR)为模板,先后以吡咯(Py)和苯胺(ANi)为单体,采用两步原位聚合法制备了具有"三明治"结构的石墨烯/聚吡咯/聚苯胺(GR/PPy/PANi)复合材料,探索了原料比对复合材料结构、微观形貌、电化学性能的影响.研究表明,Py和ANi分...  相似文献   

3.
采用1 mol/L的LiBF4/AN(CH3CN)为电解液,对LiNi1/3Co1/3Mn1/3O2/AC体系混合超级电容器进行了电化学性能对比研究.通过优化正负极的容量配比,分别评价了对应的超级电容器的充放电性能、倍率性能和循环寿命.结果表明,在正负极容量配比为4:1时,该体系超级电容器的比能量为11 Wh/kg、比...  相似文献   

4.
超级电容器是一类新型绿色储能器件,特别适合在有高功率密度需求场合下使用,具有极其广阔的应用前景.NiO因价廉、来源广泛、环境友好和电化学性能优良等优点而成为备受青睐的超级电容器用正极材料.综述了国内外有关NiO多孔薄膜电极材料制备方法的最新研究进展,归纳了提高和改善其电化学性能尤其是在大电流密度工作条件下电化学电容行为的方法,最后对这一领域未来的研究热点和发展方向进行了展望.  相似文献   

5.
40V混合型超级电容器单元的研制   总被引:8,自引:0,他引:8       下载免费PDF全文
张莉  邹积岩  郭莹  王泉水 《电子学报》2004,32(8):1253-1255
通过优化组合电解电容器的阳极和电化学电容器的阴极,研制了一种单元工作电压为40V的混合型超级电容器,该电容器与电化学电容器相比较,工作电压得到了实质性地提高.经电气性能测试表明它具有高储能密度和快速充放电的能力,频谱阻抗(EIS)分析显示它具有优良的阻抗特性和频率特性.  相似文献   

6.
采用化学聚合和电化学聚合两步法制作聚吡咯(PPy)铝电解电容器,研究了电化学聚合温度对PPy的微观形貌及聚吡咯铝电解电容器的电容和等效串联电阻Res的影响,结果表明:在10~20℃聚合所得到的聚吡咯铝电解电容器的电性能都比较理想,尤以15℃电化学聚合的为最优,其电容最大为12.6μF,Res最小为32mΩ。并且在此温度条件下制备的PPy致密性高,颗粒大小均匀。  相似文献   

7.
以橄榄石型磷酸亚铁锂(LiFePO4)为正极,活性炭(AC)为负极,制备了LiFePO4/AC混合超级电容器。通过充放电、倍率和漏电流测试,系统研究了所制混合超级电容器的电化学性能。结果表明,在正负极活性物质质量比为0.8∶1.0的条件下,混合超级电容器综合性能最佳:比容量为25.38 mAh.g–1,比能量为3.21 Wh.kg–1,分别是活性炭超级电容器的2.83倍和2.17倍,且在大倍率充放电下循环稳定性好、漏电流小,在1600 s后漏电流为0.25 mA。  相似文献   

8.
金属-有机框架(MOF)衍生的过渡金属硒化物和多孔碳纳米复合材料具有巨大的储能优势,是应用于电化学储能的优良电极材料。采用共沉淀法制备CoFe类普鲁士蓝(CoFe-PBA)纳米立方,并通过静电组装在CoFe-PBA上包覆聚吡咯(PPy)得到CoFe-PBA@PPy;通过在400℃氮气中退火并硒化成功制备了氮掺杂的碳(NC)包覆(CoFe)Se2的(CoFe)Se2@NC纳米复合材料,并对其结构和形貌进行了表征。以(CoFe)Se2@NC为电极制备了超级电容器,测试了其电化学性能,结果表明,在电流密度1 A/g时超级电容器的比电容达到1047.9 F/g,在电流密度5 A/g下1000次循环后具有良好的循环稳定性和96.55%的比电容保持率。由于其性能优越、无毒、成本低和易于制备,未来(CoFe)Se2@NC纳米复合材料在超级电容器中具有非常大的应用潜力。  相似文献   

9.
利用两步原位聚合法制备聚苯胺/聚吡咯/氧化石墨烯(PANi/PPy/GO)复合材料,考察了苯胺/吡咯/GO原料比对复合材料结构、微观形貌及电化学性能的影响。结果表明,PPy和PANi分别以非晶态形式均匀地原位复合在GO和PPy/GO片的表面; PANi/PPy/GO复合材料主要是靠法拉第赝电容进行电荷存储,且比电容较大、电荷转移电阻较小、循环稳定性较高;当苯胺/吡咯/GO原料质量比为10∶5∶1时,所制备复合材料利用循环伏安法和恒电流充放电法计算的比电容分别达到最大值154.7和243.3 F·g~(-1)。PANi/PPy/GO复合材料可用于超级电容器的电极材料。  相似文献   

10.
超级电容器作为一种新型储能转化设备,以其充放电时间短、循环寿命长以及功率大等优点,引起了广泛的关注。超级电容器电极材料是影响其性能的重要因素。具有尖晶石结构的钴基金属氧化物以其优异的电化学性能作为超级电容器的电极材料使用获得了极大的成功。概述了各种钴基金属氧化物的最新进展,如钴酸锌、钴酸锰、钴酸镍等,并对其未来的发展进行了展望。  相似文献   

11.
超级电容器作为一种绿色储能体系,在新型能量存储和转化系统发展过程中扮演着重要的角色。综述了超级电容器商业化应用的发展历史,介绍了超级电容器的分类、储能原理和两种电化学性能测试体系,重点阐述了三种改善碳基电极材料性能的思路:结构多孔化、尺度纳米化和材料复合化,展望了碳基电极材料的发展方向。  相似文献   

12.
超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,是从二十世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。  相似文献   

13.
针对聚吡咯(PPy)功能薄膜在三维微结构上很难均匀电沉积,易出现MEMS超级电容器阴阳极黏连、接触等失效现象,通过控制吡咯(Py)单体与苯磺酸钠(BSNa)溶液的配比与循环伏安扫描速度,探索PPy功能薄膜在三维微结构上的均匀沉积方法。研究表明:当Py与BSNa摩尔比为1∶2,氧化石墨烯(GO)质量分数为0.4%时,以20 mV/s的扫描速度扫描56圈,制备出均匀致密的PPy功能薄膜。SEM测试表明:PPy功能薄膜具有良好的均匀性;恒流充放电测试表明:MEMS超级电容器具有良好的快速充放电特点。因此,本研究使三维硅基微结构上的功能薄膜均匀性得到明显改善,缓解了器件的阴阳极接触失效问题。  相似文献   

14.
超级电容器也称电化学电容器,具有良好的脉冲性能和大容量储能性能.质量轻。循环性能好,是一种新型绿色环保的储能装置,近年来受到科学研究人员的广泛重视和应用市场的关注,本重点介绍了超级电容器的性能优势.研究进展及应用领域,以期在倡导建设节约型社会中.使相关厂家.商家和消费对这一新型结能器件有所了解和以识。[编按]  相似文献   

15.
MnO_(2)以其天然储量丰富、价格低廉、环境友好等优势常被用作超级电容器电极材料,但其较差的导电性限制了其应用,因而为获得优良电化学性能,MnO_(2)基复合材料的研究十分广泛。本文从不同维度MnO_(2)基复合材料的角度,对近年来其在超级电容器领域的研究和应用进行了综述。对MnO_(2)同碳材料、导电聚合物以及其他过渡金属(氢)氧化物复合所形成的球型结构复合材料以及一维、二维、三维复合材料的结构特点、合成方法、电化学性能进行了总结和对比。并对MnO_(2)基复合材料在超级电容器领域未来的研究重点进行了分析和展望。可为MnO_(2)基超级电容器复合电极材料结构的合理设计、构筑及电化学性能改善提供参考。  相似文献   

16.
20伏高电压型碳纳米管超级电容器的研制   总被引:4,自引:0,他引:4  
王晓峰  王大志  梁吉 《电子学报》2003,31(8):1182-1185
通过催化裂解法制备了碳纳米管并进一步制备了碳纳米管膜片式电极.基于该种材料的超级电容器电极比容量达到42F/g并表现出良好的大电流放电特性.本文采用多种研究方法对基于该种材料的双电层电容器的电化学特性进行了详细的研究.本文还开发了全新的超级电容器组装工艺,采用该工艺组装的碳纳米管超级电容器工作电压可以达到20V并具有良好的容量特性和阻抗特性.  相似文献   

17.
超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,是从二十世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,  相似文献   

18.
采用两步法合成了1-戊基-3-甲基咪唑硫氰酸盐([Pmim][SCN])新型离子液体电解质,测定了该电解质的物理化学性质。并用这种新型离子液体电解质与活性炭电极组装成模拟超级电容器,研究了所制超级电容器的电化学性能。结果表明:所制离子液体电导率较高,密度和表面张力都随温度升高而减小,模拟超级电容器的工作电压可达4.0 V,比电容可达421.05 F/cm3,充放电效率为96.3%,且该离子液体具有很好的与常见有机溶剂互溶的能力,具有成为超级电容器用电解质的应用潜力。  相似文献   

19.
以草酸和十二烷基苯磺酸为电解质,利用电化学方法,基于镍片制备了ZnO质量分数不同(10%~30%)的聚吡咯/氧化锌(PPy/ZnO)纳米复合材料,并对其进行了表征和性能分析。结果表明基于镍片的复合材料中,聚吡咯呈典型的菜花状结构,白色的Zn0颗粒夹杂在PPy中,填充在PPy颗粒间的缝隙中,防止基底与溶液的直接接触,这种结构对基底有着很好的防腐蚀保护性能。而且随着质量比的增加,PPy/Zn0复合材料中的白色ZnO颗粒更为密集。研究发现PPy/ZnO复合材料比纯PPy具有更好的电化学性能,而且随着质量比的增加,PPy/ZnO复合材料的氧化还原可逆性、电化学交换反应与容纳电荷的能力等电化学性能有增强的趋势。  相似文献   

20.
通过两步法合成了三种新型"绿色"功能性离子液体电解质(液)1-烷基-3-甲基咪唑硫氰酸盐([C3-5mim][SCN]),测定了离子液体的特征红外光谱和电导率。以离子液体作为超级电容器的工作电解液,采用循环伏安、交流阻抗、恒流充放电等方法研究了其电化学性能。结果表明:咪唑阳离子上具有较短烷基侧链的离子液体表现出更好的电化学稳定性及综合性能,具有成为新一代高性能超级电容器电解质(液)的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号