首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Kim YM  Cho HU  Lee DS  Park D  Park JM 《Water research》2011,45(17):5785-5795
To improve the efficiency of total nitrogen (TN) removal, solid retention time (SRT) and internal recycling ratio controls were selected as operating parameters in a full-scale activated sludge process treating high strength industrial wastewater. Increased biomass concentration via SRT control enhanced TN removal. Also, decreasing the internal recycling ratio restored the nitrification process, which had been inhibited by phenol shock loading. Therefore, physiological alteration of the bacterial populations by application of specific operational strategies may stabilize the activated sludge process. Additionally, two dominant ammonia oxidizing bacteria (AOB) populations, Nitrosomonas europaea and Nitrosomonas nitrosa, were observed in all samples with no change in the community composition of AOB. In a nitrification tank, it was observed that the Nitrobacter populations consistently exceeded those of the Nitrospira within the nitrite oxidizing bacteria (NOB) community. Through using quantitative real-time PCR (qPCR), nirS, the nitrite reducing functional gene, was observed to predominate in the activated sludge of an anoxic tank, whereas there was the least amount of the narG gene, the nitrate reducing functional gene.  相似文献   

2.
Competition between heterotrophic bacteria oxidizing organic substrate and autotrophic nitrifying bacteria in a biofilm was evaluated. The biofilm was grown in a tubular reactor under different shear and organic substrate loading conditions. The reactor was initially operated without organic substrate in the influent until stable ammonia oxidation rates of 2.1 g N/(m2 d) were achieved. A rapid increase of fluid shear in the tubular reactor on day 156 resulted in biofilm sloughing, reducing the biofilm thickness from 330 to 190 μm. This sloughing event did not have a significant effect on ammonia oxidation rates. The addition of acetate to the influent of the reactor resulted in decreased ammonia oxidation rates (1.8 g N/(m2 d)) for low influent acetate concentrations (17 mg COD/L) and the breakdown of nitrification at high influent acetate concentrations (55 mg COD/L). Rapidly increasing fluid shear triggered biofilm sloughing in some cases—but maintaining constant shear did not prevent sloughing events from occurring. With the addition of acetate to the influent of the reactor, the biofilm thickness increased up to 1350 μm and individual sloughing events removed up to 50% of the biofilm. Biofilm sloughing had no significant influence on organic substrate removal or ammonia oxidation. During 325 days of reactor operation, ammonia was oxidized only to nitrite; no nitrate production was observed. This lack of nitrite oxidation was confirmed by fluorescent in situ hybridization (FISH) analysis, which detected betaproteobacterial ammonia oxidizers but not nitrite oxidizers. Mathematical modeling correctly predicted breakdown of nitrification at high influent acetate concentrations. Model predictions deviated systematically from experimental results, however, for the case of low influent acetate concentrations.  相似文献   

3.
Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process.  相似文献   

4.
浙江某工业废水处理厂升级改造,采用AAO—MBBR复合生物膜工艺,在未新增建设用地和扩建池容的基础上,日处理量由3×104m3/d提高至6×104m3/d。改造后实际运行出水COD、TP、NH3-N和TN浓度分别为(37.7±6.61)、(0.09±0.03)、(0.25±0.14)和(5.87±1.54)mg/L,出水水质稳定达到一级A标准。实际监测表明,在好氧MBBR区存在TN去除现象,约占TN总去除量的10.36%。系统内的优势硝化菌属为硝化螺旋菌属Nitrospira,其在悬浮载体生物膜和活性污泥中的相对丰度分别为8.98%和0.92%,悬浮载体的投加使硝化细菌得到有效富集;反硝化菌在生物膜中的占比为7.94%,为悬浮载体同步硝化反硝化(SND)效果的发生提供了微观保证,提高了TN去除率。  相似文献   

5.
Nitrogen removal via nitrite (the nitrite pathway) is beneficial for carbon-limited biological wastewater treatment plants. However, partial nitrification to nitrite has proven difficult in continuous processes treating domestic wastewater. The nitrite pathway is achieved in this study in a pilot-scale continuous pre-denitrification plant (V = 300 L) treating domestic wastewater by controlling the dissolved oxygen (DO) concentration at 0.4-0.7 mg/L. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, with over 95% of the oxidized nitrogen compounds at the end of the aerobic zone being nitrite. The nitrite pathway improved the total nitrogen (TN) removal by about 20% in comparison to the nitrate pathway, and also reduced aeration costs by 24%. FISH analysis showed that the nitrite oxidizing bacteria (NOB) population gradually reduced at low DO levels, and reached negligible levels when stable nitrite pathway was established. It is hypothesized that NOB was washed out due to its relatively lower affinity with oxygen. A lag phase was observed in the establishment of the nitrite pathway. Several sludge ages were required for the onset of the nitrite pathway after the application of low DO levels. However, nitrite accumulation increased rapidly after that. A similar lag phase was observed for the upset of the nitrite pathway when a DO concentration of 2-3 mg/L was applied. The nitrite pathway negatively impacted on the sludge settleability. A strong correlation between the sludge volume index and the degree of nitrite accumulation was observed.  相似文献   

6.
The removal of gaseous ammonia in a system consisting of a biotrickling filter, a denitrification reactor and a polishing bioreactor for the trickling liquid was investigated. The system allowed sustained treatment of ammonia while preventing biological inhibition by accumulating nitrate and nitrite and avoiding generation of contaminated water. All bioreactors were packed with cattle bone composite ceramics, a porous support with a large interfacial area. Excellent removal of ammonia gas was obtained. The critical loading ranged from 60 to 120 gm(-3)h(-1) depending on the conditions, and loadings below 56 gm(-3)h(-1) resulted in essentially complete removal of ammonia. In addition, concentrations of ammonia, nitrite, nitrate and COD in the recycle liquid of the inlet and outlet of each reactor were measured to determine the fate of nitrogen in the reactor, close nitrogen balances and calculate nitrogen to COD ratios. Ammonia absorption and nitrification occurred in the biotrickling filter; nitrate and nitrite were biologically removed in the denitrification reactor and excess dissolved COD and ammonia were treated in the polishing bioreactor. Overall, ammonia gas was very successfully removed in the bioreactor system and steady state operation with respect to nitrogen species was achieved.  相似文献   

7.
Orbal氧化沟生物脱氮的中试研究   总被引:2,自引:1,他引:2  
采用有效容积为330L的中试Orbal氧化沟模型处理城市污水,研究了Orbal氧化沟的同时硝化反硝化生物脱氮现象。结果表明,Orbal氧化沟具有良好的降解有机物和硝化性能;在不投加外碳源和不设硝化液内回流的条件下,通过控制DO浓度分布,可以实现氧化沟内的同时硝化反硝化,对总氮去除率平均为61%,出水总氮平均为14mg/L。经分析认为,DO浓度分布是氧化沟内同时硝化反硝化的决定因素,进水中的COD/TN是影响总氮去除率的重要因素;通过控制外沟低DO运行,可以稳定实现Orbal氧化沟的低能耗高效脱氮;多沟道串联的反应器布置方式有效防止了低DO运行带来的亚硝酸盐积累和污泥膨胀的发生。  相似文献   

8.
High autotrophic nitrogen removal rates of 858mg NL(-1) day(-1) or 1.55g Nm(-2) day(-1) were obtained in a lab-scale rotating biological contactor treating an ammonium rich influent. It was postulated that ammonium was removed as dinitrogen gas by a sequence of aerobic ammonium oxidation to nitrite taking place in the outer biofilm layer and anaerobic ammonium oxidation with nitrite as electron acceptor occuring in the deeper biofilm layer. Chemical evidence for anaerobic ammonium oxidation within intact biofilm sludge from a lab-scale rotating biological contactor could be provided, without direct identification of responsible organisms catalysing this reaction. 15N tracer techniques were used for identification and quantification of nitrogen transformations. In batch tests with biofilm sludge at dissolved oxygen concentrations lower than 0.1mgL(-1), ammonium and nitrite did react in a stoichiometric ratio of 1:1.43 thereby forming dinitrogen. 15N isotope dilution calculations revealed that anaerobic ammonium oxidation was the major nitrogen transformation leading to concomitant ammonium and nitrite removal. Isotopic analysis of the produced biogas showed that both ammonium-N and nitrite-N were incorporated in N(2).  相似文献   

9.
污泥减量工艺:HA-A/A-MCO的好氧脱氮机制分析   总被引:2,自引:1,他引:1  
针对污泥减量技术存在对氮、磷去除能力低的问题,开发了一种具有强化脱氮除磷功能并可实现污泥减量化的HA-A/A-MCO工艺。在该工艺取得同步脱氮除磷和污泥减量优异效果的条件下,采用其处理校园生活污水,当进水TN平均为47 mg/L时,出水TN为10.9 mg/L,系统的总脱氮率为76.8%,其中好氧脱氮量占总脱氮量的50%,缺氧脱氮量占26%;HA-A/A-MCO系统存在着在好氧条件下具有反硝化能力的菌属,对好氧脱氮有一定贡献,且DO浓度对其反硝化能力没有抑制作用;好氧池中的DO浓度梯度有利于在污泥絮体内形成缺氧环境,从而促进同步硝化反硝化(SND)的发生,但减小污泥絮体尺寸会削弱絮体内部缺氧区域比例、降低SND的脱氮效率。  相似文献   

10.
进水负荷对硝化菌与异养菌竞争关系的影响   总被引:11,自引:1,他引:11  
为优化反应器的脱氮设计,就水力负荷、温度对二级上向流曝气生物滤池内微生物种群结构的影响进行了研究。试验结果表明,在生物膜培养阶段,温度对氨氯氧化的影响要大于对COD降解的影响;较高的COD负荷会导致第一级反应器内的硝化点上移,第二级反应器的硝化速率固受第一级反应器出水残余有机物的影响而下降。在第二级反应器内氨氮的硝化速率明显加快,显示了单独驯化的硝化滤柱在氧化氨氮上的优势。在不同的进水COD负荷下,氨氧化菌与硝化菌的活性均有沿柱高逐渐增加的趋势,且当负荷较高时,不同高度处的氨氧化菌活性大多高于硝化菌的。异养菌的活性变化表明,生长较快的异养菌通常占据了反应器的进口区。  相似文献   

11.
Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge.  相似文献   

12.
利用生物强化技术,通过接种短程硝化菌和亚硝酸反硝化菌于反应器中,构建了A/O-MBR短程生物脱氮污水处理工艺系统,并考察启动期和不同HRT下的运行效果。结果表明:A/O-MBR短程生物脱氮污水处理工艺启动时间短;在不同水力停留时间(HRT)时,MBR中的亚硝氮积累比率均能维持在0.95以上;AN具有很好的反硝化性能,出水NO2-和NO3-浓度均低于3mg/L。分析认为MBR中氨氧化菌维持优势地位是该工艺可实现良好的短程生物脱氮的原因。  相似文献   

13.
In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers.  相似文献   

14.
针对武汉某污水处理厂因进水总氮浓度高、碳氮比值低而导致脱氮效果不稳定的问题,基于ASDM模型建立了该污水处理厂A/A/O工艺模型,并利用历史数据对脱氮效果进行了优化模拟。分别对硝化液回流比(0~600%)、好氧段DO(1~6 mg/L)、缺氧段DO(0.005~0.2 mg/L)、温度(16~29℃)等工艺运行参数进行了模拟分析,通过模型模拟筛选出的最优运行参数如下:硝化液回流比为100%,好氧段DO为1 mg/L,污泥回流比为65%,排泥量为550 m3/d,且缺氧段DO浓度越低越有利于脱氮。根据以上结论并结合该污水处理厂实际情况,确定如下优化实施方案:硝化液回流比为300%,好氧段DO为3 mg/L以下,同时关闭硝化液回流点前的曝气头以降低缺氧段DO,并按90kg/d投加碳源(以COD计)。该污水处理厂按照上述方案实际运行2个月,脱氮效果明显提高,出水总氮达标率达到100%。  相似文献   

15.
Gupta AB  Gupta SK 《Water research》2001,35(7):1714-1722
High strength domestic wastewater discharges after no/partial treatment through sewage treatment plants or septic tank seepage field systems have resulted in a large build-up of groundwater nitrates in Rajasthan, India. The groundwater table is very deep and nitrate concentrations of 500-750 mg/l (113-169 as NO3(-)-N) are commonly found. A novel biofilm in a 3-stage lab-scale rotating biological contactor (RBC) was developed by the incorporation of a sulphur oxidising bacterium Thiosphaera pantotropha which exhibited high simultaneous removal of carbon and nitrogen in fully aerobic conditions. T. pantotropha has been shown to be capable of simultaneous heterotrophic nitrification and aerobic denitrification thereby helping the steps of carbon oxidation, nitrification and denitrification to be carried out concurrently. The first stage having T. pantotropha dominated biofilm showed high carbon and NH4(+)-N removal rates of 8.7-25.9 g COD/m2 d and 0.81-1.85 g N/m2 d for the corresponding loadings of 10.0-32.0 g COD/m2 d and 1.0-3.35 g N/m2 d. The ratio of carbon removed to nitrogen removed was close to 12.0. The nitrification rate increased from 0.81 to 1.8 g N/m2 d with the increasing nitrogen loading rates despite a high simultaneous organic loading rate. However, it fell to 1.53 g N/m2 d at a high load of 3.35 g N/m2 d and 32 g COD/m2 d showing a possible inhibition of the process. A simultaneous 44-63% removal of nitrogen was also achieved without any significant NO2(-)-N or NO3(-)-N build-up. The second and third stages, almost devoid of any organic carbon, acted only as autotrophic nitrification units, converting the NH4(+)-N from stage 1 to nitrite and nitrate. Such a system would not need a separate carbon oxidation step to increase nitrification rates and no external carbon source for denitrification. The alkalinity compensation during denitrification for that destroyed in nitrification may also result in a high economy.  相似文献   

16.
异养硝化菌的分离及其强化活性污泥脱氮效果   总被引:5,自引:0,他引:5  
为提高水处理过程中的脱氮率,实现好氧条件下对总氮的去除。通过试验分离出一株异养硝化菌,该菌株为白色革兰氏阴性球状菌。将该菌扩大培养后接种于活性污泥系统并进行了处理模拟废水的试验。结果表明:该菌能在好氧条件下分别代谢氨氮、亚硝酸盐氮、硝酸盐氮,并通过好氧反硝化实现对总氮的去除。用该菌株强化的活性污泥系统对以氨氮、亚硝酸盐氮、硝酸盐氮为惟一氮源的模拟废水进行处理,4h的总氮去除率分别为85%、60%、70%。  相似文献   

17.
唐山某污水厂进行一级A提标改造,采用MBBR工艺对氧化沟进行改造,在缺氧区及好氧区同时投加悬浮载体。改造后系统出水COD、BOD5、TN、氨氮、TP、SS分别为(30.5±5.2)、(3.4±0.6)、(13.0±1.4)、(1.6±1.0)、(0.42±0.05)、(7.55±1.18) mg/L,稳定达到一级A标准。污水厂全流程测定结果显示,好氧区存在稳定的同步硝化反硝化(SND)过程,对TN的去除率为8.9%,保障在不投加碳源的情况下出水TN稳定达标。小试结果表明,在10~12℃的低温环境下,悬浮载体的硝化速率为0.13 kgN/(m3·d),原水反硝化速率最大为0.039 kgN/(m3·d),悬浮载体的加入保障了系统低温下良好的处理效果。高通量测序结果表明:好氧区悬浮载体上硝化螺旋菌相对丰度为6.57%,是活性污泥的3倍,并且在好氧区悬浮载体上发现了相对丰度为1.85%的反硝化菌,为SND现象提供了微观解释。缺氧区悬浮载体上反硝化菌的相对丰度为7.72%,是活性污泥中的2.5倍。通过原池嵌入MBBR工艺,强化了系统的硝化反硝化效果。  相似文献   

18.
基于HPB工艺中试研究结果,为进一步验证HPB工艺在提标扩容实际生产工况下的处理效果和可实施性,在湖南某水质净化厂进行了生产性试验。试验期间,在总进、出水量保持不变的条件下,进行HPB工艺改造,将现状两组生化池(A2/O)切换为单组运行,处理水量提升1倍,总停留时间缩短为5. 0 h以下。通过复合粉末载体的投加及排泥过程中载体和附着微生物的回收循环,实现了"双泥龄",克服了脱氮菌和除磷菌的污泥龄矛盾,提高了脱氮除磷效率。试验结果表明,生化池混合液浓度控制在10 000 mg/L左右,在厂区进水水量和水质变化较大(KZ≥1. 3)、水温低于冬季设计温度时,HPB工艺系统运行稳定,主要出水水质指标COD <30 mg/L、NH3-N <1. 5 mg/L、TN <10 mg/L、TP <0. 3 mg/L,能够实现高效、稳定达标。  相似文献   

19.
采用SBR反应器,以硝化污泥和厌氧氨氧化(ANAMMOX)颗粒污泥的混合污泥为接种污泥,以有机模拟废水为研究对象,进行了厌氧氨氧化生物脱氮工艺研究。结果表明,在控制温度为25℃,水力停留时间为12 d,pH值为7.2~8.5,进水NH4+-N为220 mg/L左右、NO2--N为138 mg/L左右、COD为294 mg/L的条件下成功启动了SBR反应器。在高氨氮、低有机物浓度的条件下,ANAMMOX菌和异养反硝化菌能够实现共存,且ANAMMOX菌仍能成为优势菌属,AN-AMMOX反应是反应器中的主导反应。镜检发现,优势菌尺寸约为1μm,呈圆形或椭圆形,成簇聚生,表面可观察到明显的漏斗状缺口,具有典型的厌氧氨氧化菌特征。污泥中形成了以厌氧氨氧化球状菌为主、其他杆状菌和丝状菌共存的微生物混培体。  相似文献   

20.
The biological filter was introduced during the latter part of the last century but, in 1913, a radical new process was developed which resulted in a four-fold reduction in the size of sewage-treatment plants. This new method was called the 'activated-sludge process', and whilst biological filters are still in use - especially for small works - activated sludge is now the dominant secondary treatment process and is the 'engine'around which modern treatment systems are constructed.
This paper (a) reviews the milestones in the evolution of the activated-sludge process from 1913 to 1954, centering on reliable removal of BOD and suspended solids, (b) highlights the improvements in design capabilities (1955-74), with the emphasis on the attainment of consistent nitrification, and (c) discusses the removal of nitrogen and phosphorus (1975-97), with brief reference to computer modelling and the control of sludge properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号