首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of benzothiazole in aqueous solution by a photo-assisted Fenton reaction has been studied in a batch reactor in the pH range 2.0–3.2 and for H2O2 and Fe(III) concentrations respectively between 1.0×10−3–1.5×10−1 and 1.0×10−6–4.0×10−6 M.

A kinetic model has been developed to predict the decay of benzothiazole at varying reaction conditions. The use of kinetic constants from the literature in the model allows to simulate the system behavior by taking into account the influence of pH, hydrogen peroxide, Fe(III) and sulfate concentrations and the ionic strength.  相似文献   


2.
Single-crystal ZnWO4:Dy3+ was grown by Czochralski technique. The XRD, absorption spectra as well as fluorescence spectrum are investigated and the Judd–Ofelt intensity parameters Ω2, Ω4, Ω6 are obtained to be 7.76 × 10−20 cm2, 0.57 × 10−20 cm2, 0.31 × 10−20 cm2, respectively. Calculated radiative transition rate, branching ratios and radiative lifetime for different transition levels of ZnWO4:Dy3+ crystals are presented. Fluorescence lifetime of 4F9/2 level is 158 μs and quantum efficiency is 66%.The most intense fluorescence line at 575 nm correlative with transition 4F9/2 → 6H13/2 is potentially for application of yellow lasers.  相似文献   

3.
Highly conducting p- and n-type poly-Si:H films were deposited by hot wire chemical vapor deposition (HWCVD) using SiH4+H2+B2H6 and SiH4+H2+PH3 gas mixtures, respectively. Conductivity of 1.2×102 (Ω cm)−1 for the p-type films and 2.25×102 (Ω cm)−1 for the n-type films was obtained. These are the highest values obtained so far by this technique. The increase in conductivity with substrate temperature (Ts) is attributed to the increase in grain size as reflected in the atomic force microscopy results. Interestingly conductivity of n-type films is higher than the p-type films deposited at the same Ts. To test the applicability of these films as gate contact Al/poly-Si/SiO2/Si capacitor structures with oxide thickness of 4 nm were fabricated on n-type c-Si wafers. Sputter etching of the poly-Si was optimized in order to fabricate the devices. The performance of the HWCVD poly-Si as gate material was monitored using CV measurements on a MOS test device at different frequencies. The results reveal that as deposited poly-Si without annealing shows low series resistance.  相似文献   

4.
Enhanced fluoride sorption by mechanochemically activated kaolinites   总被引:1,自引:0,他引:1  
This study investigated the surface modification of photocatalyst and photodecomposition of formaldehyde from indoor pollution source. This study explored the feasibility of the application of the ultraviolet light emitting diode (UVLED) instead of the traditional ultraviolet (UV) lamp to treat the formaldehyde. The photocatalytic decomposition of formaldehyde at various initial concentrations was elucidated according to the Langmuir–Hinshelwood model. The reaction rate constant (k) and adsorption equilibrium constant (KL) over 0.334 g silver titanium oxide photocatalyst (Ag/TiO2) coated on glass sticks with 254 nm ultraviolet lamp (UVC), 365 nm ultraviolet lamp (UVA), and UVLED are 650 ppmv min−1 and 2 × 10−4 ppmv−1, 500 ppmv min−1 and 1.04 × 10−4 ppmv−1, and 600 ppmv min−1 and 2.52 × 10−5 ppmv−1, respectively. A comparison of the simulation results with the experimental data was also made, indicating good agreement. The magnitudes of energy effectiveness (Ee) are in the order of UVLED (0.6942 mg kW−1 h−1) > UVA (0.007 mg kW−1 h−1) > UVC (0.0053 mg kW−1 h−1). The Ee of UVLED is 131 times larger than that of UVC. The UVLED can save a lot of energy in comparison with the traditional UV lamps. Thus, this study showed the feasible and potential use of UVLED in photocatalysis.  相似文献   

5.
Appreciable excited-state absorption (ESA) in U2+:CaF2 and Co2+:ZnSe saturable absorbers was measured at λ=1.573 μm by optical transmission versus light fluence curves of 30–40 ns long pulses. The ground- and excited-state absorption cross-sections obtained were (9.15±0.3)×10−20 and (3.6±0.2)×10−20 cm2, respectively, for U2+:CaF2, and (57±4)×10−20 and (12.5±1)×10−20 cm2 for Co2+:ZnSe. Thus, ESA is not negligible in U2+:CaF2 and Co2+:ZnSe, as previously estimated.  相似文献   

6.
Green fluorescence has been obtained under continuous laser excitation in the 780–860 nm range in GdAlO3:Er3+. With the help of the Judd-Ofelt treatment we built a model based on population rate equations to describe its time evolution. We found the intensity parameters to be Ω2 = 2.045 × 10−20 cm2, Ω4 = 1.356 × 10−20 cm2 Ω6 = 1. 125 × 10−20 cm2. Even if a two-photon absorption and a looping mechanism are necessary to well describe the dynamics, the main process responsible for up-conversion is energy transfer between erbium ions.  相似文献   

7.
Highly conducting and transparent indium tin oxide (ITO) thin films were prepared on SiO2 glass and silicon substrates by pulsed laser ablation (PLA) from a 90 wt.% In2O3-10 wt.% SnO2 sintered ceramic target. The growths of ITO films under different oxygen pressures (PO2) ranging from 1×10−4–5×10−2 Torr at low substrate temperatures (Ts) between room temperature (RT) and 200°C were investigated. The opto-electrical properties of the films were found to be strongly dependent on the PO2 during the film deposition. Under a PO2 of 1×10−2 Torr, ITO films with low resistivity of 5.35×10−4 and 1.75×10−4 Ω cm were obtained at RT (25°C) and 200°C, respectively. The films exhibited high carrier density and reasonably high Hall mobility at the optimal PO2 region of 1×10−2 to 1.5×10−2 Torr. Optical transmittance in excess of 87% in the visible region of the solar spectrum was displayed by the films deposited at Po2≥1×10−2 Torr and it was significantly reduced as the PO2 decreases.  相似文献   

8.
Smectite clay samples from the Amazon region, Brazil, were pillarized by intercalating the species obtained from the chemical reactions: (i) AlCl3·6H2O/NaOH, (ii) titanium ethoxide in hydrochloric acid and (iii) direct use of ZrOCl2·8H2O solution. The natural matrices and the pillaring solutions were maintained under vigorous stirring at 298 K for 3 h and then subjected to calcination at temperatures of 723 and 873 K. Natural and pillared matrices were characterized by XRD, FTIR, TG–DTG and nitrogen adsorption–desorption isotherms. The resulting materials were used for zinc adsorption from aqueous solution at room temperature. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data and the Freundlich model is limited for higher concentrations. The pillaring process increases the thermal stability, the basal spacing of the natural clay sample (A1) from 1.55 to 2.06 nm and the surface area from 44.30 to 223.73 m2 g−1. Kinetic studies demonstrated an equilibrium time of 180 min for zinc adsorption on the pillared matrices. Pseudo-first-order, Lagergren pseudo-second-order and Elovich equations demonstrated a better agreement with second-order kinetics was obtained with K2 = 4.17–10.43 × 10−3 g mg−1 min−1 for the A1 sample.  相似文献   

9.
Thin films of copper indium di-selenide (CIS) with a wide range of compositions near stoichiometry have been formed on glass substrates in vacuum by the stacked elemental layer (SEL) deposition technique. The compositional and optical properties of the films have been measured by proton-induced X-ray emission (PIXE) and spectrophotometry (photon wavelength range of 300–2500 nm), respectively. Electrical conductivity (σ), charge-carrier concentration (n), and Hall mobility (μH) were measured at temperatures ranging from 143 to 400 K. It was found that more indium-rich films have higher energy gaps than less indium-rich ones while more Cu-rich films have lower energy gaps than less Cu-rich films. The sub-bandgap absorption of photons is minimum in the samples having Cu/In ≈ 1 and it again decreases, as Cu/In ratio becomes less than 0.60. Indium-rich films show n-type conductivities while near-stoichiometric and copper-rich films have p-type conductivities. At 300 K σ, n and μH of the films vary from 2.15 × 10−3 to 1.60 × 10−1 (Ω cm)−1, 2.28 × 1015 to 5.74 × 1017 cm−3 and 1.74 to 5.88 cm2 (V s)−1, respectively, and are dependent on the composition of the films. All the films were found to be non-degenerate. The ionization energies for acceptors and donors vary between 12 and 24, and 3 and 8 meV, respectively, and they are correlated well with the Cu/In ratios. The crystallites of the films were found to be partially depleted in charge carriers.  相似文献   

10.
In order to get an insight into the grain boundaries (GBs) in nanocrystalline (n-) metal, we prepared the high-density n-Au with ρ/ρ0>99% by the gas-deposition method and carried out the vibrating reed measurements, where ρ/ρ0 is the relative density referring to the bulk density. The strain amplitude dependence (SAMD) of the resonant frequency (f) and the internal friction (Q−1) was measured for the strain () amplitude between 10−6 and 2×10−3 and for temperature between 5 and 300 K. No plastic deformations are detected for the present strain range, where f decreases for up to 10−4 and then turns to increase, showing saturation for between 10−4 and 2×10−3. The low temperature irradiation by 2 MeV electrons or 20 MeV protons causes an increase in the Young’s modulus at 6 K, which is surmised to reflect a modification of the anelastic process in the GB regions. In contrast, the SAMD of f is hardly modified by irradiation, suggesting that it is indicative of a collective motion of atoms in n-Au.  相似文献   

11.
Ca65Mg15Zn20 bulk metallic glass (BMG) samples of dimensions 3.2 mm × 7 mm × 125 mm were prepared using a low-pressure die casting technique. These samples were ground to produce tensile test pieces in compliance with ASTM E8-04. This work is the first reported study of the tensile behaviour of Ca65Mg15Zn20 BMG in the supercooled liquid region (105–120 °C). Two deformation conditions were used for testing: (i) constant strain rate testing from 10−3 to 10−4 s−1 and (ii) constant load testing using loads of 20–50 N applied to a tensile sample during heating at a constant rate of 5 °C s−1. The maximum elongation to failure in the BMG was in excess of 850% for constant load testing although, under isothermal testing conditions, most samples failed after 200% elongation. It is concluded that large superplastic elongations (>500%) during isothermal tensile straining is difficult in this alloy due to the onset of crystallization.  相似文献   

12.
M. Din  R. D. Gould 《Thin solid films》1999,340(1-2):28-32
Cadmium arsenide is a II–V semiconductor which exhibits n-type intrinsic conductivity with high mobility up to μn=1.0–1.5 m2/V s. Potential applications include magnetoresistors and both thermal and photodetectors, which require electrical characterization over a wide range of deposition and measurement conditions. The films were prepared by vacuum evaporation with deposition rates in the range 0.5–6.0 nm/s and substrate temperatures maintained at constant values of 20–120°C. Sandwich-type samples were deposited with film thicknesses of 0.1–1.1 μm using evaporated electrodes of Ag and occasionally Au or Al. Above a typical electric field Fb of up to 5×107 V/m all samples showed instabilities characteristic of dielectric breakdown or electroforming. Below this field they showed a high-field conduction process with logJV1/2, where J is the current density and V the applied voltage. This type of dependence is indicative of carrier excitation over a potential barrier whose effective barrier height has been lowered by the high electric field. The field-lowering coefficient β had a value of (1.2–5.3)×10−5 eV m1/2/V1/2 which is reasonably consistent with the theoretical value of βPF=2.19×10−5 eV m1/2/V1/2 expected when the field-lowering occurs at donor-like centres in the semiconductor (Poole–Frenkel effect). For thinner films Schottky emission was more probable. The effects of the film thickness, electrode materials, deposition rate, and substrate temperature on the conductivity behaviour are discussed.  相似文献   

13.
The most important primary interaction cross section of gamma radiation which is of interest in radiation dosimetry and health physics is the energy absorption coefficient μen of the medium under study. Direct measurement of μen is, however, difficult and recourse is taken to theoretical computations for its estimation. In this study a new, simple and direct method for the determination of μen is reported. The method is based on paraxial sphere transmission using a proportional-response gamma detector. The bremsstrahlung originating from photoelectrons in the absorbing medium and fluorescence radiations from shielding etc. have been suppressed by using suitable filters. The effects of nonparaxiality and of finite sample thickness have been accounted for, using extrapolation procedures. The deviation from nonproportionality and other corrections have been shown to be small. The measured value of μen for paraffin has been determined as (3.3±0.2)×10−3 m2/kg. This compares favourably with the theoretically computed value of 3.35 × 10−3 m2/kg given by Hubbell et al.  相似文献   

14.
Serrated flow was investigated in superalloy IN738LC, a nickel-base γ′ age-hardened alloy. In this material serrated flow appeared between 350 and 450 °C and strain rate of (8.77 × 10−5 to 8.77 × 10−3) s−1. Activation energy for this process was calculated to be 0.69–0.86 eV which is in good agreement with the values reported for similar alloys. Results show that the diffusion rate of substitutional solute atoms at this temperature range is too low to cause this effect. This suggests that the interaction of solute atoms and moving dislocation is responsible for the observed serrated flow in this alloy.  相似文献   

15.
Thin films of zinc oxide (ZnO) were prepared by dc reactive magnetron sputtering on glass substrates at various oxygen partial pressures in the range 1×10−4–6×10−3 mbar and substrate temperatures in the range 548–723 K. The variation of cathode potential of zinc target on the oxygen partial pressure was explained in terms of target poisoning effects. The stoichiometry of the films has improved with the increase in the oxygen partial pressure. The films were polycrystalline with wurtzite structure. The films formed at higher substrate temperatures were (0 0 2) oriented. The temperature dependence of Hall mobility of the films formed at various substrate temperatures indicated that the grain boundary scattering of charge carriers was predominant electrical conduction mechanism in these films. The optical band gap of the films increased with the increase of substrate temperature. The ZnO films formed under optimized oxygen partial pressure of 1×10−3 mbar and substrate temperature of 663 K exhibited low electrical resistivity of 6.9×10−2 Ω cm, high visible optical transmittance of 83%, optical band gap of 3.28 eV and a figure of merit of 78 Ω−1 cm−1.  相似文献   

16.
Ti–6Al–4V (Ti64) sheet specimens were cathodically hydrogenated in sulfuric acid solution at ambient conditions. The hydrogenated specimens were then sent to go through the designed thermohydrogen processing (THP) twice to obtain a nano-sized grain structure. The average grain size of resulted microstructure was found to be 10–20 nm obtained by TEM. Qualitative and quantitative analyses performed by employing X-ray diffractometry (XRD) and elemental analysis (EA) showed that the addition of As2O3 as hydrogenation promoter in electrolyte significantly increased the hydrogen uptake. The high concentration of hydrogen arising from promoter action is the key factor in grain refinement. The optimal processing parameter found for grain-refining Ti64 was: (1) electrolytic hydrogenation at 100 mA cm−2 for 3 h in 1 N H2SO4(aq) by adding 0.1 g L−1 As2O3; (2) β transformation carried out at 850 °C for 1 h in air furnace, followed by a furnace cooling to 590 °C and held for 6 h; (3) oxide film removed and then dehydrogenated at 650 °C and 1.0 × 10−6 Torr for 10 h; (4) repeated the same processes once more.  相似文献   

17.
The colour and colour causing-compounds has always been undesirable in water for any use, be it industrial or domestic wastewaters. The discharge of such effluents causes excessive oxygen demand in the receiving water and then a treatment is required before discharge into ecosystems. This study examined the possibility to remove colour causing-compounds from effluent by chemical coagulation, in comparison with direct electrocoagulation. The inorganic coagulants (C1, C2 and C3) in the form of dry powder tested, were respectively produced from electrolysis of S1 = [NaOH (7.5 × 10−3 M)], S2 = [NaCl (10−2 M)], and S3 = [NaOH (7.5 × 10−3 M) + NaCl (10−2 M)] solutions, using sacrificial aluminium electrodes operated at an electrical potential of 12 V. Reactive textile dye (CI Reactive Red 141) was used as model of colour-causing compound prepared at a concentration of 50 mg l−1. The best performances of dye removal were obtained with C2 having a chemical structure comprised of a mixture of polymeric specie (Al45O45(OH)45Cl) and monomeric species (AlCl(OH)2·2H2O and Al(OH)3). The removal efficiency (RA) evaluated by measuring the yields of 540 nm-absorbance removal varied from 41 to 96% through 60 min of treatment by imposing a concentration of C2 ranging from 100 to 400 mg l−1. The effectiveness of the treatment increased and the effluent became more and more transparent while increasing C2 concentration. The comparison of chemical treatment using C2 coagulant and direct electrocoagulation of CI Reactive Red 141 containing synthetic solution demonstrated the advantage of chemical treatment during the first few minutes of treatment. A yield of 88% of absorbance removal was recorded using C2 coagulant (400 mg l−1) over the first 10 min of treatment, compared to 60% measured using direct electrocoagulation while imposing either 10 or 15 V of electrical potential close to the value (12 V) required during C2 production. However, at the end of the treatment (after 60 min of treatment), CI Reactive Red 141 pollutant was completely removed from solution (540 nm-absorbance removal of 100%) using direct electrochemical treatment, compared to 96.4% of absorbance removed while treating dye-containing synthetic solution by means of C2 coagulant.  相似文献   

18.
Chlorophenols in water are resistant to biological oxidation and they have to be destroyed by chemical oxidation. In the present work, Fe(III), Co(II) and Ni(II) incorporated MCM41 mesoporous solids were used as catalysts for oxidation of 2,4,6-trichlorophenol in water with or without the oxidant, H2O2. The catalysts were prepared by impregnation and were characterized by XRD and FTIR measurements. The parent MCM41, Fe(III), Co(II) and Ni(II) impregnated MCM41 had cation exchange capacity of 20.5, 25.5, 24.2, 26.0 mequiv./100 g, respectively. The catalysts were used after calcination at 773–873 K for 5 h. The reactions were carried out in a high pressure stirred reactor at 0.2 MPa (autogenous) and 353 K under various reaction conditions. The conversion achieved with Fe(III), Co(II) and Ni(II) incorporated MCM41 in 5 h is respectively 59.4, 50.0 and 65.6% with 2,4,6-TCP:H2O2 molar ratio of 1:1, and 60.2, 60.9 and 68.8% in absence of H2O2. The oxidation has a first order rate coefficient of (1.2–4.8) × 10−3 min−1. The results show that introduction of Fe(III), Co(II) and Ni(II) into MCM-41 through impregnation produces very effective catalysts for wet oxidation of 2,4,6-trichlorophenol.  相似文献   

19.
High-quality LB multilayers have been prepared from the Lu(III) sandwich complex of 2,3,9,10,16,17,23,24-octa (n-butoxy)phthalocyanine (LuPc2(OBu)16). Surface pressure-area isotherms were characterized and indicate that a stable monolayer is formed corresponding to an area per molecule of 2.4 nm2 at 30 mN m−1. The LB films were highly birefringent, and polarized spectra gave dichroic ratios of 3.3 for the 670 nm absorption band and between 0.5 and 2.8 for infrared absorptions. The results indicate that the phthalocyanine rings were highly oriented perpendicular to the dipping direction but somewhat tilted from the substrate normal. The order was shown to be absent when (i) unsubstituted LuPc2 was used for LB films, or (ii) the horizontal lifting method of film deposition was used, or (iii) the surface pressure was increased to 50 mN m−1, causing a molecular rearrangement. The ordering was improved at 100 °C and finally lost at 280 °C by annealing on a hot stage. The d.c. electrical conductivity of LB films of LuPc2(OBu)16 was low (σ ≈ 2 × 10−7 Ω−1 m−1), in contrast with unsubstituted LuPc2 (σ ≈ 10−1 Ω−1 m−1) and showed no evidence for anisotropy. The findings are in broad agreement with related studies and illustrate some of the many factors involved in improving the structure of phthalocyanine LB films for possible applications.  相似文献   

20.
In this study, a procedure for synthesis of new organic-inorganic magnetic composite resins was established. The procedure was based upon immobilization of magnetite (Mag) as a ferromagnetic material within the polymer poly(acrylic acid acrylonitrile) P(AA-AN) and the ion exchange resin (Amberlite IR120). The produced magnetic resins, IR120-PAN-Mag (R1) and P(AA-AN)-Mag (R2) were assessed as sorbents for Cr(VI). Various factors influencing the sorption of Cr(VI), e.g., pH, equilibrium time, initial concentration and temperature were studied. The sorption process was very fast initially and maximum sorption was achieved within 3 h and pH 5.1. The kinetic of the system has been evaluated with pseudo first order model, second order model, Elovich model, intra-particle diffusion model and liquid film diffusion model. Chromium interaction with composite particles followed second-order kinetics with a correlation coefficient extremely high and closer to unity and rate constant (ks) has the values 1.68 × 10−4 and 1.9 × 10−4 g (mg−1 min−1) for R1 and R2, respectively. The values of equilibrium sorption capacity (qe) are consistent with the modeled data and attain the range 893–951 mg g−1. Kinetically, both pore diffusion and film diffusion are participating in ruling the diffusion of Cr(VI) ions. The sorption data gave good fits with Temkin and Flory–Huggins isotherm models. The isotherm parameters related to the heat of sorption are in the range 8–16 kJ mol−1 which is the range of bonding energy for ion exchange interactions and so suggest an ion exchange mechanism for removal of Cr(VI) by the composite sorbents. The adsorption process was exothermic with ΔH in the range of −73 to −97 kJ mol−1. The negative values of Gibbs free energy confirm the feasibility and the spontaneous nature of Cr(VI) removal with these novel composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号