共查询到19条相似文献,搜索用时 62 毫秒
1.
由于系统的强非线性以及不确定性,同时考虑到港湾环境下水声信号的噪声大,水下机器人进行精确作业时的运动控制一直是其实用化过程中困挠人们的问题。过程神经网络是传统神经网络的拓展,它增加了一个对于时间的聚合算子,使网络同时具有时空二维信息处理能力,从而更好地模拟了生物神经元的信息处理机制。水下机器人运动控制系统的输入、输出均是随时间连续变化的过程量。在基本神经元模型上,结合S函数和预先规划思想,建立水下机器人过程神经元运动控制模型,参数学习过程中,将遍历性的渐变混沌噪声引入其中,增强控制器全局优化能力。仿真试验表明,该新型控制模型,对于水下机器人的运动非线性控制器具有设计简单、响应速度快、超调小、鲁棒性好等各种优点。 相似文献
2.
3.
4.
5.
一个水下机器人路径规划系统的实现 总被引:1,自引:0,他引:1
我们用层次结构表示水下环境数据,以动态规划算法为核心,实现了一个水下机器人路径规划系统,本文介绍该系统的设计思路及路径规划的实现。 相似文献
6.
7.
本文介绍了一种类似生物触 水下作业机器人的触感器的工作原理的结构,并对传感器信号进行了处理,为机器人控制提供感受信息。 相似文献
8.
本文论述了一种用于水下作业机械手的机器人触觉传感器的结构及工作原理,这种传感器的开关类似于水下生物的“触须”,能够在4个方位上判别与对象接触的位置及接触长度,对于其他形式的机械同样适用。 相似文献
9.
本文将人工神经元用于机器人的位置控制,无需建立机器人的精确动力学模型。通过神经元的自学习来设定和调整控制量,对单关节机器人进行了仿真研究,结果表明,神经元控制器的控制效果好且鲁棒性强。 相似文献
10.
本文以柔性机器人水下环境中的柔顺运动为研究对象,建立了柔性机器人水下运动的动力学模型。并运用VC 6.0和Matlab7.0进行仿真,结果显示了柔性机器人在水下环境中良好的运动学特性。 相似文献
11.
基于生物免疫系统的生理特性,以免疫系统T细胞、B细胞与免疫应答为基础,引入了免疫算法,其结构简单,易于实现,但是由于忽略了免疫系统的记忆、自适应、细胞繁殖和自然死亡等复杂的机理行为,也不具有实时自调整的能力。结合梯度搜索方法和希尔函数,提出了一种基于Sigmoid非线性模型的自学习免疫控制算法。将该方法应用于水下机器人的运动控制系统进行仿真研究,结果表明了改进人工免疫算法的有效性。 相似文献
12.
Design and Control of Autonomous Underwater Robots: A Survey 总被引:20,自引:0,他引:20
J. Yuh 《Autonomous Robots》2000,8(1):7-24
During the 1990s, numerous worldwide research and development activities have occurred in underwater robotics, especially in the area of autonomous underwater vehicles (AUVs). As the ocean attracts great attention on environmental issues and resources as well as scientific and military tasks, the need for and use of underwater robotic systems has become more apparent. Great efforts have been made in developing AUVs to overcome challenging scientific and engineering problems caused by the unstructured and hazardous ocean environment. In the 1990s, about 30 new AUVs have been built worldwide. With the development of new materials, advanced computing and sensory technology, as well as theoretical advancements, R&D activities in the AUV community have increased. However, this is just the beginning for more advanced, yet practical and reliable AUVs. This paper surveys some key areas in current state-of-the-art underwater robotic technologies. It is by no means a complete survey but provides key references for future development. The new millennium will bring advancements in technology that will enable the development of more practical, reliable AUVs. 相似文献
13.
This paper presents a novel integrated guidance and control strategy for docking of autonomous underwater vehicles. The approach to the base, and hence the control design, is divided in two steps: (i) in the first, at higher speed, the vehicle dynamics is assumed to be underactuated, and an appropriate control law is derived to steer the vehicle towards the final docking path, achieving convergence to zero of the appropriate error variables for almost all initial conditions; (ii) in the second stage, at low speed, the vehicle is assumed to be fully actuated, and a robust control law is designed that achieves convergence to zero of the appropriate error variables for all initial conditions, in the presence of parametric model uncertainty. Simulations are presented illustrating the performance of the proposed controllers, including model uncertainty and sensor noise. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
14.
将自主水下航行器(AUV)的深度控制问题转换为对非线性严格反馈系统的分析,提出了一种结合反步法和确定学习理论的自适应学习控制方法。通过反步法设计了一种输入状态稳定(ISS)神经网络控制器,其中引入小增益定理,避免了控制器设计中存在的奇异值问题,并在满足持续激励(PE)条件下,利用神经网络辨识实现了对系统未知动态的局部准确逼近和部分神经网络权值的收敛,保证了闭环系统的稳定。将从动态模式中学到的知识静态保存,提取动态特征设计学习控制器,仿真结果表明,该控制器避免了执行同样任务时的重复训练,改善了系统控制性能,验证了所提控制方法的有效性。 相似文献
15.
16.
Hejia Pan 《International journal of control》2013,86(1):98-113
In this article, we propose a robust depth control design scheme for autonomous underwater vehicles (AUVs) in the presence of hydrodynamic parameter uncertainties and disturbances. The controller is designed via a new indirect robust control method that handles the uncertainties by formulating the uncertainty bounds into the cost functional and then transforming the robust control problem into an equivalent optimal control problem. Both robust asymptotic stability and optimality can be achieved and proved with this new formulation. The θ-D method is utilised to solve the resultant nonlinear optimal control problem such that an approximate closed-form feedback controller can be obtained and thus is easy to implement onboard without intensive computation load. Simulation results demonstrate that robust depth control is accomplished under the system parameter uncertainties and disturbances with small control fin deflection requirement. 相似文献
17.
18.
为解决由于随时间变化水动力阻尼引起的参数变化和不确定性的问题,提出了基于径向基函数神经网络的未知评估算法,引入自适应算法以保证神经网络权值的最优评估.基于Lyapunov稳定性理论,设计一种自适应神经网络控制器以保证路径跟踪系统中所有误差状态都趋于稳定.为了验证该控制器的可行性,对系统施加如位置误差、方向误差等虚拟干扰,证明该控制器可将误差消减为零.另一方面,机器人在以恒定的速度行驶时,每个航点被指定一个适合半径的圆弧可以保证其有较高的精度.为了评估路径跟踪控制器的性能,提出直线型和直线加圆弧型路径方案.仿真结果表明,该控制器可以有效地消除机器人非线性和模型不确定性造成的干扰. 相似文献