首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Shafiqur Rehman   《Applied Energy》1999,64(1-4):369-378
This study utilized monthly mean daily values of global solar-radiation and sunshine duration at 41 locations in Saudi Arabia and developed an empirical correlation for the estimation of global solar radiation at locations where it is not measured. The paper also presents the comparison between the present correlation and other models developed under different geographical and varied meteorological conditions. The comparisons are made using standard statistical tests, namely mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE) tests. The errors are calculated using monthly mean daily measured and estimated values of global solar radiation at all 41 locations. The study found that the present correlation produced the best estimates of global solar radiation.  相似文献   

2.
An artificial neural network (ANN) model for estimating monthly mean daily diffuse solar radiation is presented in this paper. Solar radiation data from 9 stations having different climatic conditions all over China during 1995–2004 are used for training and testing the ANN. Solar radiation data from eight typical cities are used for training the neural networks and data from the remaining one location are used for testing the estimated values. Estimated values are compared with measured values in terms of mean percentage error (MPE), mean bias error (MBE) and root mean square error (RMSE). The results of the ANN model have been compared with other empirical regression models. The solar radiation estimations by ANN are in good agreement with the actual values and are superior to those of other available models. In addition, ANN model is tested to predict the same components for Zhengzhou station over the same period. Results indicate that ANN model predicts the actual values for Zhengzhou with a good accuracy of 94.81%. Data for Zhengzhou are not included as a part of ANN training set. Hence, these results demonstrate the generalization capability of this approach and its ability to produce accurate estimates in China.  相似文献   

3.
In this paper, artificial neural network (ANN) models are developed for estimating monthly mean hourly and daily diffuse solar radiation. Solar radiation data from 10 Indian stations, having different climatic conditions, all over India have been used for training and testing the ANN model. The coefficient of determination (R2) for all the stations are higher than 0.85, indicating strong correlation between diffuse solar radiation and selected input parameters. The feedforward back-propagation algorithm is used in this analysis. Results of ANN models have been compared with the measured data on the basis of percentage root-mean-square error (RMSE) and mean bias error (MBE). It is found that maximum value of RMSE in ANN model is 8.8% (Vishakhapatnam, September) in the prediction of hourly diffuse solar radiation. However, for other stations same error is less than 5.1%. The computation of monthly mean daily diffuse solar radiation is also carried out and the results so obtained have been compared with those of other empirical models. The ANN model shows the maximum RMSE of 4.5% for daily diffuse radiation, while for other empirical models the same error is 37.4%. This shows that ANN model is more accurate and versatile as compared to other models to predict hourly and daily diffuse solar radiation.  相似文献   

4.
Yingni Jiang   《Energy》2009,34(9):1276-1283
In this paper, an artificial neural network (ANN) model is developed for estimating monthly mean daily global solar radiation of 8 typical cities in China. The feed-forward back-propagation algorithm is applied in this analysis. The results of the ANN model and other empirical regression models have been compared with measured data on the basis of mean percentage error (MPE), mean bias error (MBE) and root mean square error (RMSE). It is found that the solar radiation estimations by ANN are in good agreement with the measured values and are superior to those of other available empirical models. In addition, ANN model is tested to predict the same components for Kashi, Geermu, Shenyang, Chengdu and Zhengzhou stations over the same period. Data for Kashi, Geermu, Shenyang, Chengdu and Zhengzhou are not used in the training of the networks. Results obtained indicate that the ANN model can successfully be used for the estimation of monthly mean daily global solar radiation for Kashi, Geermu, Shenyang, Chengdu and Zhengzhou. These results testify the generalization capability of the ANN model and its ability to produce accurate estimates in China.  相似文献   

5.
In this study, seven different empirical equations are employed to estimate the monthly average daily global solar radiation on a horizontal surface for provinces in the different regions of Turkey, using only the relative duration of sunshine. Daily global solar radiation and sunshine measurement data collected for the provinces of Turkey are obtained from the Turkish State Meteorological Service. The regression constants of the new models developed in this study are found for the provinces of Turkey, as well as that of some models given in the literature. In order to indicate the performance of the models, the statistical test methods of the mean bias error (MBE), mean absolute bias error (MABE), mean relative error (MRE), root mean square error (RMSE) and correlation coefficient (r) are used.  相似文献   

6.
Solar radiation measurements are not easily available, especially for the diffuse solar radiation. In this study, two models for estimating the diffuse solar radiation are proposed based on multiple predictors including the clearness index, relative sunshine duration, ambient temperature and relative humidity. One of them aims to increase the estimation accuracy, and the other aims to estimate the diffuse solar radiation direct from other meteorological elements in the absence of the global solar radiation. For a case study, the performance of the proposed models is validated by comparing with eight existing models selected from literature against the measured data at Guangzhou station in China. Through the analysis based on statistical error tests, results show that the two models can estimate the monthly average daily diffuse solar radiation with good accuracy.  相似文献   

7.
In this paper, selected empirical models were used to estimate the monthly mean hourly global solar radiation from the daily global radiation at three sites in the east coast of Malaysia. The purpose is to determine the most accurate model to be used for estimating the monthly mean hourly global solar radiation in these sites. The hourly global solar radiation data used for the validation of selected models were obtained from the Malaysian Meteorology Department and University Malaysia Terengganu Renewable Energy Station. In order to indicate the performance of the models, the statistical test methods of the normalized mean bias error, normalized root mean square error, correlation coefficient and t-statistical test were used. The monthly mean hourly global solar radiation values were calculated by using six models and the results were compared with corresponding measured data. All the models fit the data adequately and can be used to estimate the monthly mean hourly global solar radiation. This study finds that the Collares-Pereira and Rabl model performed better than the other models. Therefore the Collares-Pereira and Rabl model is recommended to estimate the monthly mean hourly global radiations for the east coast of Malaysia with humid tropical climate and in elsewhere with similar climatic conditions.  相似文献   

8.
Using 9 years of solar radiation data, we established a simple model to calculate the monthly mean global solar radiation on a horizontal surface in Tabouk (28.38° N, 36.6° E, Saudi Arabia). The model correlates the global solar radiation with five meteorological parameters. These parameters are the perceptible water vapor, air temperature, relative humidity, atmospheric pressure, and the mean monthly daily fraction of possible sunshine hours. The estimated global radiation from the model was compared with the measured values using the mean bias error (MBE), coefficient of correlation (R), root mean square error (RMSE), and mean percentage error (MPE). The t statistics were also applied as another indication of suitability. The model has a high coefficient of correlation (R = 0.99), MBE = −14 × 10−4 kW h/m2, RMSE = 0.10 kW h/m2, and MPE = −0.03%. It is believed that the model developed in this work is applicable for estimating, with great accuracy. The monthly mean daily global radiation at any site having similar conditions to those found in Tabouk.Furthermore, 29 regression models available in the literature were used to estimate the global solar radiation data for Tabouk. The selected models were different in terms of the variables they use and in the number of the variables they contained. The models were compared on the basis of the statistical errors considered above. Apart from Abdall’s model, which showed a reasonable estimate (MPE = −2.04%, MBE = −0.22 kW h/m2, and RMSE = 0.59 kW h/m2), all the models under or overestimate the measured solar radiation values. Comparisons between these models and the produced model, from this study, were also considered. According to the statistical results, the model of Abdall showed the prediction closest to those estimated using the developed model.  相似文献   

9.
In the present paper, the correlations of Page, Liu and Jordan, and Iqbal were employed to predict the monthly mean daily diffuse solar radiation in Cairo. However, it was found that the coefficients used in these correlations were not applicable in the case of Cairo. New coefficients were obtained and used in the above correlations in order to predict values of the monthly average daily diffuse radiation. The present coefficients were found to be very different from those obtained for conditions in other locations. The estimated diffuse radiations were compared with the measured values. It is concluded that all correlations (i.e. equations which use either the cloudiness index or the relative sunshine) with the present coefficients, may be used to predict the monthly mean daily diffuse radiation in Cairo.  相似文献   

10.
In this paper, an attempt has been made to develop a new model to evaluate the hourly solar radiation for composite climate of New Delhi. The comparison of new model for hourly solar radiation has been carried out by using various model proposed by others. The root mean square error (RMSE) and mean bias error (MBE) have been used to compare the accuracy of new and others model. The results show that the ASHRAE and new proposed model estimate hourly solar radiation better for composite climate of New Delhi in comparison to other models. Hourly solar radiation estimated by constants obtained by new model (modified ASHRAE model) for composite climate of India is fairly comparable with measured data. The percentage mean bias error with new constants for New Delhi was found as low as 0.15 and 0% for hourly beam and diffuse radiation, respectively. There is a 1.9–8.5% RMSE between observed and predicted values of beam radiation using new constants for clear days. The statistical analysis has been used for the present study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper aims to propose monthly models responsible for the theoretical evaluation of the global horizontal irradiance of a tropical region in India which is Sivagangai situated in Tamilnadu. The actual measured global horizontal irradiance hails from a 5 MW solar power plant station located at Sivagangai in Tamilnadu. The data were monitored from May 2011 to April 2013. The theoretical assessment was conducted differently by employing a programming platform called Microsoft Visual Basic 2010 Express. A graphical user interface was created using Visual Basic 2010 Express, which provided the evaluation of empirical parameters for model formulation such as daily sunshine duration (S), maximum possible sunshine hour duration (S0), extra terrestrial horizontal global irradiance (H0) and extra terrestrial direct normal irradiance (G0). The proposed regression models were validated by the significance of statistical indicators such as mean bias error, root mean square error and mean percentage error from the predicted and the actual values for the region considered. Comparison was made between the proposed monthly models and the existing normalized models for global horizontal irradiance evaluation.  相似文献   

12.
In Iran, most of the models used so far, have provided solar estimation for a few specific locations based on the short-term solar observations. Using different radiation models, (e.g. Sabbagh, Paltridge–Proctor, Daneshyar) and various input parameters (e.g. cloud cover, sunshine duration, relative humidity, temperature, and altitude) we developed a general height-depended formula for the prediction of the direct and diffuse monthly average daily solar radiation for 64 mountainous arid and semi-arid locations in West and East Iran. The models mentioned are modified and new coefficients are defined for the diffuse component based on the long-term observed diffuse data. Model results are validated against up to 13-year daily solar observations at 10 solar radiation sites. In comparison with the previous studies, the newly developed method performs more accurate estimation (less than 3% MPE error) in the arid and semi-arid regions. Comparison of the model results indicates that calibration of the coefficients made to the diffuse formula against the longer period experimental data can improve the estimations of global solar radiation.  相似文献   

13.
In this study, empirical correlations are developed to estimate the monthly average daily global solar radiation on a horizontal surface (H) for the city of ?zmir in Turkey. Experimental data were measured in the Solar–Meteorological Station of the Solar Energy Institute at Ege University. The present models are then compared with the 25 models available in the literature for calculating H based on the main percentage error, root mean error, the main bias error, and correlation coefficient. It can be concluded that the present models predict the values of H for ?zmir better than other available models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Spatial databases of climate data in digital format are required for many agricultural and eco-environmental systems. This study compared 7 approaches for interpolating monthly mean daily sunshine hours and solar radiation over mainland China. The approaches included simple geostatistical approaches to incorporation of Universal Transverse Mercator (UTM) coordinates and elevation. Performance indicators (root mean square error, mean absolute percentage error, and modeling efficiency) showed thin plate smoothing spline with UTM coordinates and elevation (TPS) outperformed other models. Besides, multiple linear regression equations for estimating solar radiation using geographical parameters (UTM coordinates and elevation) and sunshine hours predicted by TPS performed well for the study site. Spatial datasets of annual and monthly mean daily sunshine hours and solar radiation with 1 km resolution were then obtained by the best performance models. Spatial and temporal variability was clearly observed in sunshine hours and solar radiation. For both annual and seasonal scenarios, higher values of sunshine hours and solar radiation existed in north and Tibetan Plateau and lower values were observed in the middle and southern China. Lower values of annual solar radiation were also found in northeastern China. Sunshine hours and solar radiation varied with time, especially from spring to summer and from summer to autumn. The accurate gridded datasets are expected to provide significant information on more efficient use of natural resources.  相似文献   

15.
The transition from manual to automated weather observations at US National Weather Service Offices has compromised the ability to use these data as a means for estimating global horizontal and direct solar radiation. The creation of long term model-derived solar radiation climatologies continues to rely on the in situ cloud data that these observations provide, since homogeneous and readily available satellite data does not span the transition. An existing semi-physical solar radiation model is revised to allow for the estimation of hourly solar radiation based on these observations. Model evaluation reveals that errors in solar radiation estimates are comparable to other contemporary solar radiation models that estimate global horizontal solar radiation on both daily (10–15% mean absolute error) and hourly (15–19% mean absolute error) timescales. Hourly mean absolute errors are similar for different sky conditions, while daily percent errors are similar between seasons. Model updates also allow for accurate estimates of solar radiation in various climate regimes; regional patterns in model bias are not evident.  相似文献   

16.
Shah Alam   《Renewable Energy》2006,31(8):1253-1263
In the present paper, three parametric models Yang, CPCR2 and REST (without considering transmittance due to nitrogen dioxide) have been analyzed for four Indian stations, namely New Delhi, Mumbai, Pune and Jaipur over the period of 1995–2002, under cloudless conditions. These stations have different climatic conditions. The beam radiation at normal incidence as well as global solar radiation at horizontal surface was computed for these locations during all seasons except monsoon (June to September). The computed values of beam and global irradiance was compared with reference values in case of beam and measured values in case of global solar radiation on the basis of percentage root mean square error (RMSE) and mean bias error (MBE). The maximum RMSE is 6.5% in REST model, as compare to 15% in Yang and 11% in CPCR2 model for predicting direct normal irradiance. The predicted global radiation at horizontal is showing maximum RMSE 7% in REST model, 13.4% in Yang and 25.9% in CPCR2 model. This shows that REST model has good agreement with measured data for these Indian stations as compare to other two models.  相似文献   

17.
In the present study, the global, direct and diffuse components of solar radiation as well as temperature, relative humidity and wind speed have been continuously monitored and analysed on an hourly, daily and monthly basis. The monthly average daily total solar radiation varies from 2700 W h/m2 in December to 8000 W h/m2 in June with an average clearness index of 0.65. Experimental data are compared to the predictions of different theoretical models as functions of declination and hour angles. Correlations are obtained describing the variation of hourly, daily and monthly averages of total and diffuse solar radiation using polynomial expressions. Empirical correlations describing the dependence of the daily average diffuse to total radiation ratio on the clearness index are also obtained. Data for the daily diffuse to total radiation ratio are compared to correlations obtained by other investigators. The comparison shows a reasonable agreement with some scatter due to the seasonal dependence of the correlation. Comparison of calculations with experimental measurements under clear sky conditions show excellent agreement with a maximum error of 8%.  相似文献   

18.
The main objective of the present study is to evaluate the applicability of the diffuse solar radiation models from previous studies and establish new models for Bursa. Therefore, 35 regression models from previous studies in the literature are used and categorized as follows: (1) cloudness index is the function of clearness index; (2) cloudness index is the function of relative sunshine duration; (3) the diffuse coefficient is the function of the clearness index; and (4) the diffuse coefficient is the function of the relative sunshine duration. Also, new four diffuse solar radiation models were developed using 1968–2015 long-term global solar radiation and sunshine duration data. The new models are then compared with 35 empirical equations available in previous studies in terms of different statistical tests. Consequently, Models 6 and 8 are found as the most accurate and high-performance empirical models for estimation of the monthly mean diffuse solar radiation on a horizontal surface for Bursa, Turkey.  相似文献   

19.
The design of solar systems and the determination of cooling and heating load of buildings require information on global radiation in addition to other meteorological data. In this study, equations have been developed for the clearness index KT , which is the ratio of monthly average daily values of global radiation to that of extraterrestrial radiation on a horizontal surface, as a function of the ratio of monthly average daily values of sunshine hours and day length. The extraterrestrial radiation and the day length can be calculated from Eqs. (5) and (3) respectively. The sunshine hours can be obtained from the meteorological station of Singapore. A reasonable estimate of monthly average daily global radiation can be obtained from these equations.  相似文献   

20.
The method usually used to compute solar radiation, when no measured data are available, is the well-known regression technique relating mean daily totals of global and diffuse solar radiation with the mean duration of sunshine. Using this method and taking into account the first order multiple reflections between the ground and the atmosphere, regression parameters were obtained from the monthly mean values of daily totals of global solar radiation and sunshine at a network of 16 stations in India. Daily values of global and diffuse solar radiation were then computed for 121 stations, where sunshine data are available for periods of 6–28 yr, using interpolated values of the regression parameters. Where no sunshine data were available, global and diffuse solar radiation were computed from cloud observations, using the inverse relationship between sunshine and cloudiness. Further, using the empirical relationship between daily totals and the corresponding hourly values of global and diffuse solar radiation, two sets of curves were prepared valid for the whole country, using which mean hourly values of global and diffuse radiation could be deduced from the corresponding daily totals, with a high degree of accuracy. The paper discusses the validity of the techniques used for computing daily and hourly values of global and diffuse solar radiation from sunshine and cloud amounts at an extended network of 145 stations in India and stresses the fact that such techniques are successful, only if accurate data on both radiation and sunshine are available at a widely distributed network of stations for a minimum period from at least 5 to 6 yr, using carefully calibrated and well-maintained instruments of the required quality. Theoretical models have also been used to compute clear sky noon values of global, diffuse and direct solar radiation from the solar constant, allowing for attenuation by atmospheric constituents such as ozone, water vapour, dust and aerosols. Using a simple model, calculations of global and diffuse solar radiation on clear days were made for 145 stations from values of the solar constant and measured values of ozone, water vapour and atmospheric turbidity. A method of extending the technique to overcast skies and partly clouded skies is discussed. The values of the mean annual transmission factor for global solar radiation under cloud-free conditions using the two methods show excellent agreement and establishes the soundness of the regression technique on one hand and the reliability of the theoretical model used for computing clear sky radiation, on the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号